R语言三种聚类

一、距离和相似系数

r语言中使用dist(x, method = "euclidean",diag = FALSE, upper = FALSE, p = 2) 来计算距离。其中x是样本矩阵或者数据框。method表示计算哪种距离。method的取值有:
euclidean                欧几里德距离,就是平方再开方。
maximum                切比雪夫距离
manhattan            绝对值距离
canberra                Lance 距离
minkowski            明科夫斯基距离,使用时要指定p值
binary                    定性变量距离.
定性变量距离: 记m个项目里面的 0:0配对数为m0 ,1:1配对数为m1,不能配对数为m2,距离=m1/(m1+m2);
diag 为TRUE的时候给出对角线上的距离。upper为TURE的时候给出上三角矩阵上的值。

r语言中使用scale(x, center = TRUE, scale = TRUE) 对数据矩阵做中心化和标准化变换。
如只中心化 scale(x,scale=F) , 

r语言中使用sweep(x, MARGIN, STATS, FUN="-", ...) 对矩阵进行运算。MARGIN为1,表示行的方向上进行运算,为2表示列的方向上运算。STATS是运算的参数。FUN为运算函数,默认是减法。下面利用sweep对矩阵x进行极差标准化变换

?
1
2
3
>center <- sweep(x, 2, apply(x, 2, mean)) #在列的方向上减去均值。
>R <- apply(x, 2, max) - apply(x,2,min)   #算出极差,即列上的最大值-最小值
>x_star <- sweep(center, 2, R, "/")        #把减去均值后的矩阵在列的方向上除以极差向量
?
1
2
3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值