There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
![]() | ![]() | ![]() |
---|---|---|
Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:
3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
红黑树 是一种二叉查找树 左<根<右
根为红 孩子结点必是黑
点到叶子结点的黑色树相同
根必为黑
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <vector>
using namespace std;
vector<int> preOrder;
struct BitNode{
int data;
struct BitNode *rchild, *lchild;
};
BitNode* create(BitNode *root,int x)
{
if(root == NULL)
{
root = new BitNode();
root->data=x;
root->lchild = root->rchild=NULL;
}else if(abs(x)< abs(root->data)){
root->lchild = create(root->lchild,x);
}else{
root->rchild = create(root->rchild,x);
}
return root;
}
bool fRedcBlack(BitNode *root)
{
if(root == NULL)
{
return true;
}else{
if(root->data <0)
{
if(root->lchild != NULL && root->lchild->data<0){
return false;
}if(root->rchild != NULL && root->rchild->data<0)
{
return false;
}
}
}
return fRedcBlack(root->lchild) && fRedcBlack(root->rchild);
}
int blackNumber(BitNode * root)
{
if(root == NULL)
return 0;
int l = blackNumber(root->lchild);
int r = blackNumber(root->rchild);
return root->data > 0 ? max(l, r)+1:max(l, r);
}
bool sameBNumber(BitNode *root)
{
if(root == NULL)
{
return true;
}
int l = blackNumber(root->lchild);
int r = blackNumber(root->rchild);
if(l!=r)
return false;
return sameBNumber(root->lchild) && sameBNumber(root->rchild);
}
int main()
{
int k,m;
scanf("%d",&k);
while(k--)
{
scanf("%d",&m);
preOrder.resize(m);
BitNode *root = NULL;
for(int i=0;i<m;i++)
{
scanf("%d",&preOrder[i]);
root = create(root, preOrder[i]);
}
if(preOrder[0]<0 || !fRedcBlack(root) || !sameBNumber(root))
{
printf("No\n");
}else{
printf("Yes\n");
}
}
return 0;
}