补充决策树那块没写完的,废话不多说,直接上代码,详解可以看注释内容
package mllib.tree import org.apache.log4j.{Level, Logger} import org.apache.spark.mllib.evaluation.MulticlassMetrics import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.tree.{RandomForest, DecisionTree} import org.apache.spark.mllib.tree.model.{RandomForestModel, DecisionTreeModel} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkContext, SparkConf} /** * Created by 汪本成 on 2016/7/18. */ object randomForest { //屏蔽不必要的日志显示在终端上 // Logger.getLogger("org.apache.spark").setLevel(Level.WARN) // Logger.getLogger("org.apache.eclipse.jetty.server").setLevel(Level.OFF) var beg = System.currentTimeMillis() //创建入口对象 val conf = new SparkConf().setAppName("rndomForest").setMaster("local") val sc= new SparkContext(conf) val HDFS_COVDATA_PATH = "hdfs://192.168.43.150:9000/user/spark/sparkLearning/mllib/covtype.data" val rawData = sc.textFile(HDFS_COVDATA_PATH) //设置LabeledPoint格式 val data = |