对于稀疏自编码的学习,有以下网址可以参考:
主要参考资料是Stanford 教授 Andrew Ng 的 Deep Learning 教程讲义:http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial。这个讲义已经有人翻译了(赞一个),可以参见邓侃的新浪博客http://blog.sina.com.cn/s/blog_46d0a3930101h6nf.html。
参考资料http://blog.youkuaiyun.com/zouxy09/article/details/8775488,
1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题。
他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x16 像素,不妨把这400个碎片标记为 S[i], i = 0,.. 399。接下来,再从这些黑白风景照片中,随机提取另一个碎片,尺寸也是 16x16 像素,不妨把这个碎片标记为 T。
他们提出的问题是,如何从这400个碎片中,选取一组碎片,S[k], 通过叠加的办法,合成出一个新的碎片,而这个新的碎片,应当与随机选择的目标碎片 T,尽可能相似,同时,S[k] 的数量尽可能少。用数学的语言来描述,就是:
Sum_k (a[k] * S[k]) --> T, 其中 a[k] 是在叠加碎片 S[k] 时的权重系数。
为解决这个问题,Bruno Olshausen和 David Field 发明了一个算法,稀疏编码(Sparse Coding)。
稀疏编码是一个重复迭代的过程,每次迭代分两步:1)选择一组S[K],然后调整a[K],使得Sum_k (a[k] * S[k])最接近T。
2)固定住a[K],在400个碎片中,选择其他更适合的碎片S’[k],替代原先的S[K],使得Sum_k (a[k] * S[k])最接近T。
另外,博客园里有一个前辈关于讲义中练习的一系列文章,在具体实现时可以参照下:http://www.cnblogs.com/tornadomeet/category/497607.html
tornadomeet的博文http://www.cnblogs.com/tornadomeet/archive/2013/03/20/2970724.html,里面有代码可以实现下