参考:
Map 综述(二):彻头彻尾理解 LinkedHashMap
entry: [ˈentrɪ] 进入;入口
LinkedHashMap是HashMap的子类,与HashMap有着同样的存储结构,但它加入了一个双向链表的头结点,将所有put到LinkedHashmap的节点一一串成了一个双向循环链表,因此它保留了节点插入的顺序,可以使节点的输出顺序与输入顺序相同。
LinkedHashMap可以用来实现LRU算法。
LinkedHashMap同样是非线程安全的,只在单线程环境下使用。
LinkedHashMap
可以认为是HashMap
+LinkedList
,即它既使用HashMap操作数据结构,又使用LinkedList维护插入元素的先后顺序。
package java.util;
import sun.misc.Hashing;
import java.io.*;
import java.util.function.BiFunction;
import java.util.function.Consumer;
import java.util.function.BiConsumer;
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>{
private static final long serialVersionUID = 3801124242820219131L;
/**
* The head of the doubly linked list.
*/
//双向循环链表的头结点,整个LinkedHashMap中只有一个header,
//它将哈希表中所有的Entry贯穿起来,header中不保存key-value对,只保存前后节点的引用
private transient LinkedHashMapEntry<K,V> header;
/**
* The iteration ordering method for this linked hash map: <tt>true</tt>
* for access-order, <tt>false</tt> for insertion-order.
*
* @serial
*/
//双向链表中元素排序规则的标志位。
//accessOrder为false,表示按插入顺序排序
//accessOrder为true,表示按访问顺序排序
private final boolean accessOrder;
//---------------------------------构造方法开始--------------------------------------
/**
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
* with the specified initial capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
//调用HashMap的构造方法来构造底层的数组
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;//链表中的元素默认按照插入顺序排序
}
/**
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
* with the specified initial capacity and a default load factor (0.75).
*
* @param initialCapacity the initial capacity
* @throws IllegalArgumentException if the initial capacity is negative
*/
//加载因子取默认的0.75f
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}
/**
* Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance
* with the default initial capacity (16) and load factor (0.75).
*/
//加载因子取默认的0.75f,容量取默认的16
public LinkedHashMap() {
super();
accessOrder = false;
}
/**
* Constructs an insertion-ordered <tt>LinkedHashMap</tt> instance with
* the same mappings as the specified map. The <tt>LinkedHashMap</tt>
* instance is created with a default load factor (0.75) and an initial
* capacity sufficient to hold the mappings in the specified map.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
//含有子Map的构造方法,同样调用HashMap的对应的构造方法
public LinkedHashMap(Map<? extends K, ? extends V> m) {
super(m);
accessOrder = false;
}
/**
* Constructs an empty <tt>LinkedHashMap</tt> instance with the
* specified initial capacity, load factor and ordering mode.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @param accessOrder the ordering mode - <tt>true</tt> for
* access-order, <tt>false</tt> for insertion-order
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
//该构造方法可以指定链表中的元素排序的规则
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
//---------------------------------构造方法结束--------------------------------------
/**
* Called by superclass constructors and pseudoconstructors (clone,
* readObject) before any entries are inserted into the map. Initializes
* the chain.
*/
//覆写父类的init()方法(HashMap中的init方法为空),
//该方法在父类的构造方法和Clone、readObject中在插入元素前被调用,
//初始化一个空的双向循环链表,头结点中不保存数据,头结点的下一个节点才开始保存数据。
@Override
void init() {
header = new LinkedHashMapEntry<>(-1, null, null, null);
header.before = header.after = header;
}
/**
* Transfers all entries to new table array. This method is called
* by superclass resize. It is overridden for performance, as it is
* faster to iterate using our linked list.
*/
//覆写HashMap中的transfer方法,它在父类的resize方法中被调用,
//扩容后,将key-value对重新映射到新的newTable中
//覆写该方法的目的是为了提高复制的效率,
//这里充分利用双向循环链表的特点进行迭代,不用对底层的数组进行for循环。
@Override
void transfer(HashMapEntry[] newTable) {
int newCapacity = newTable.length;
for (LinkedHashMapEntry<K,V> e = header.after; e != header; e = e.after) {
int index = indexFor(e.hash, newCapacity);
e.next = newTable[index];
newTable[index] = e;
}
}
/**
* Returns <tt>true</tt> if this map maps one or more keys to the
* specified value.
*
* @param value value whose presence in this map is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
*/
//覆写HashMap中的containsValue方法,
//覆写该方法的目的同样是为了提高查询的效率,
//利用双向循环链表的特点进行查询,少了对数组的外层for循环
public boolean containsValue(Object value) {
// Overridden to take advantage of faster iterator
if (value==null) {
for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
if (e.value==null)
return true;
} else {
for (LinkedHashMapEntry e = header.after; e != header; e = e.after)
if (value.equals(e.value))
return true;
}
return false;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*/
//覆写HashMap中的get方法,通过getEntry方法获取Entry对象。
//注意这里的recordAccess方法,
//如果链表中元素的排序规则是按照插入的先后顺序排序的话,该方法什么也不做,
//如果链表中元素的排序规则是按照访问的先后顺序排序的话,则将e移到链表的末尾处。
public V get(Object key) {
LinkedHashMapEntry<K,V> e = (LinkedHashMapEntry<K,V>)getEntry(key);
if (e == null)
return null;
e.recordAccess(this);//取得Entry,如果不为null,调用recordAccess方法
return e.value;
}
/**
* Removes all of the mappings from this map.
* The map will be empty after this call returns.
*/
//清空HashMap,并将双向链表还原为只有头结点的空链表
public void clear() {
super.clear();
header.before = header.after = header;
}
/**
* LinkedHashMap entry.
*/
//Enty的数据结构,多了两个指向前后节点的引用
private static class LinkedHashMapEntry<K,V> extends HashMapEntry<K,V> {
// These fields comprise the doubly linked list used for iteration.
LinkedHashMapEntry<K,V> before, after;
//调用父类的构造方法
LinkedHashMapEntry(int hash, K key, V value, HashMapEntry<K,V> next) {
super(hash, key, value, next);
}
/**
* Removes this entry from the linked list.
*/
//双向循环链表中,删除当前的Entry
private void remove() {
before.after = after;
after.before = before;
}
/**
* Inserts this entry before the specified existing entry in the list.
*/
//双向循环立链表中,将当前的Entry插入到existingEntry的前面
private void addBefore(LinkedHashMapEntry<K,V> existingEntry) {
after = existingEntry;
before = existingEntry.before;
before.after = this;
after.before = this;
}
/**
* This method is invoked by the superclass whenever the value
* of a pre-existing entry is read by Map.get or modified by Map.set.
* If the enclosing Map is access-ordered, it moves the entry
* to the end of the list; otherwise, it does nothing.
*/
//覆写HashMap中的recordAccess方法(HashMap中该方法为空),
//当调用父类的put方法,在发现插入的key已经存在时,会调用该方法,
//调用LinkedHashmap覆写的get方法时,也会调用到该方法,
//该方法提供了LRU算法的实现,它将最近使用的Entry放到双向循环链表的尾部,
//accessOrder为true时,get方法会调用recordAccess方法
//put方法在覆盖key-value对时也会调用recordAccess方法
//它们导致Entry最近使用,因此将其移到双向链表的末尾
void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
//如果链表中元素按照访问顺序排序,则将当前访问的Entry移到双向循环链表的尾部,
//如果是按照插入的先后顺序排序,则不做任何事情。
if (lm.accessOrder) {
lm.modCount++;
remove(); //移除当前访问的Entry
addBefore(lm.header);//将当前访问的Entry插入到链表的尾部
}
}
void recordRemoval(HashMap<K,V> m) {
remove();
}
}
//迭代器
private abstract class LinkedHashIterator<T> implements Iterator<T> {
LinkedHashMapEntry<K,V> nextEntry = header.after;
LinkedHashMapEntry<K,V> lastReturned = null;
/**
* The modCount value that the iterator believes that the backing
* List should have. If this expectation is violated, the iterator
* has detected concurrent modification.
*/
int expectedModCount = modCount;
public boolean hasNext() {
return nextEntry != header;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
LinkedHashMap.this.remove(lastReturned.key);
lastReturned = null;
expectedModCount = modCount;
}
//从head的下一个节点开始迭代
Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (nextEntry == header)
throw new NoSuchElementException();
LinkedHashMapEntry<K,V> e = lastReturned = nextEntry;
nextEntry = e.after;
return e;
}
}
//key迭代器
private class KeyIterator extends LinkedHashIterator<K> {
public K next() { return nextEntry().getKey(); }
}
//value迭代器
private class ValueIterator extends LinkedHashIterator<V> {
public V next() { return nextEntry().getValue(); }
}
//Entry迭代器
private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() { return nextEntry(); }
}
// These Overrides alter the behavior of superclass view iterator() methods
Iterator<K> newKeyIterator() { return new KeyIterator(); }
Iterator<V> newValueIterator() { return new ValueIterator(); }
Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); }
/**
* This override alters behavior of superclass put method. It causes newly
* allocated entry to get inserted at the end of the linked list and
* removes the eldest entry if appropriate.
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
// Previous Android releases called removeEldestEntry() before actually
// inserting a value but after increasing the size.
// The RI is documented to call it afterwards.
// **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
// Remove eldest entry if instructed
LinkedHashMapEntry<K,V> eldest = header.after;
if (eldest != header) {
boolean removeEldest;
size++;
try {
removeEldest = removeEldestEntry(eldest);
} finally {
size--;
}
if (removeEldest) {
removeEntryForKey(eldest.key);
}
}
super.addEntry(hash, key, value, bucketIndex);
}
/**
* Returns the eldest entry in the map, or {@code null} if the map is empty.
*
* Android-added.
*
* @hide
*/
//提供最近最少使用的元素:
public Map.Entry<K, V> eldest() {
Entry<K, V> eldest = header.after;
return eldest != header ? eldest : null;
}
/**
* This override differs from addEntry in that it doesn't resize the
* table or remove the eldest entry.
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
HashMapEntry<K,V> old = table[bucketIndex];
LinkedHashMapEntry<K,V> e = new LinkedHashMapEntry<>(hash, key, value, old);
table[bucketIndex] = e;
e.addBefore(header);
size++;
}
// Intentionally make this not JavaDoc, as the we don't conform to
// the behaviour documented here (we call removeEldestEntry before
// inserting the new value to be consistent with previous Android
// releases).
// **** THIS CHANGE WILL BE REVERTED IN A FUTURE ANDROID RELEASE ****
/*
* Returns <tt>true</tt> if this map should remove its eldest entry.
* This method is invoked by <tt>put</tt> and <tt>putAll</tt> after
* inserting a new entry into the map. It provides the implementor
* with the opportunity to remove the eldest entry each time a new one
* is added. This is useful if the map represents a cache: it allows
* the map to reduce memory consumption by deleting stale entries.
*
* <p>Sample use: this override will allow the map to grow up to 100
* entries and then delete the eldest entry each time a new entry is
* added, maintaining a steady state of 100 entries.
* <pre>
* private static final int MAX_ENTRIES = 100;
*
* protected boolean removeEldestEntry(Map.Entry eldest) {
* return size() > MAX_ENTRIES;
* }
* </pre>
*
* <p>This method typically does not modify the map in any way,
* instead allowing the map to modify itself as directed by its
* return value. It <i>is</i> permitted for this method to modify
* the map directly, but if it does so, it <i>must</i> return
* <tt>false</tt> (indicating that the map should not attempt any
* further modification). The effects of returning <tt>true</tt>
* after modifying the map from within this method are unspecified.
*
* <p>This implementation merely returns <tt>false</tt> (so that this
* map acts like a normal map - the eldest element is never removed).
*
* @param eldest The least recently inserted entry in the map, or if
* this is an access-ordered map, the least recently accessed
* entry. This is the entry that will be removed it this
* method returns <tt>true</tt>. If the map was empty prior
* to the <tt>put</tt> or <tt>putAll</tt> invocation resulting
* in this invocation, this will be the entry that was just
* inserted; in other words, if the map contains a single
* entry, the eldest entry is also the newest.
* @return <tt>true</tt> if the eldest entry should be removed
* from the map; <tt>false</tt> if it should be retained.
*/
//该方法是用来被覆写的,一般如果用LinkedHashmap实现LRU算法,就要覆写该方法,
//比如可以将该方法覆写为如果设定的内存已满,则返回true,这样当再次向LinkedHashMap中put
//Entry时,在调用的addEntry方法中便会将近期最少使用的节点删除掉(header后的那个节点)。 //该方法默认返回false,我们一般在用LinkedHashMap实现LRU算法时,要覆写该方法,
//一般的实现是,当设定的内存(这里指节点个数)达到最大值时,返回true,
//这样put新的Entry(该Entry的key在哈希表中没有已经存在)时,就会调用removeEntryForKey方法,
//将最近最少使用的节点删除(head后面的那个节点,实际上是最近没有使用)。
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
// Map overrides
public void forEach(BiConsumer<? super K, ? super V> action) {
if (action == null)
throw new NullPointerException();
int mc = modCount;
// Android modified - breaks from the loop when modCount != mc
for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
action.accept(e.key, e.value);
if (modCount != mc)
throw new ConcurrentModificationException();
}
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
if (function == null)
throw new NullPointerException();
int mc = modCount;
// Android modified - breaks from the loop when modCount != mc
for (LinkedHashMapEntry<K,V> e = header.after; modCount == mc && e != header; e = e.after)
e.value = function.apply(e.key, e.value);
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
1、LinkedHashMap是如何实现LRU的。
首先,当accessOrder为true时,才会开启按访问顺序排序的模式,才能用来实现LRU算法。
我们可以看到,无论是put方法还是get方法,都会导致目标Entry成为最近访问的Entry,因此便把该Entry加入到了双向链表的末尾(get方法通过调用recordAccess方法来实现,put方法在覆盖已有key的情况下,也是通过调用recordAccess方法来实现,在插入新的Entry时,则是通过createEntry中的addBefore方法来实现),这样便把最近使用了的Entry放入到了双向链表的后面,多次操作后,双向链表前面的Entry便是最近没有使用的,这样当节点个数满的时候,删除的最前面的Entry(head后面的那个Entry)便是最近最少使用的Entry。
2、LinkedHashMap由于继承自HashMap,因此它具有HashMap的所有特性,同样允许key和value为null。
3、注意源码中的accessOrder标志位,
当它false时,表示双向链表中的元素按照Entry插入LinkedHashMap到中的先后顺序排序,即每次put到LinkedHashMap中的Entry都放在双向链表的尾部,这样遍历双向链表时,Entry的输出顺序便和插入的顺序一致,这也是默认的双向链表的存储顺序;
当它为true时,表示双向链表中的元素按照访问的先后顺序排列,可以看到,虽然Entry插入链表的顺序依然是按照其put到LinkedHashMap中的顺序,但put和get方法均有调用recordAccess方法(put方法在key相同,覆盖原有的Entry的情况下调用recordAccess方法),该方法判断accessOrder是否为true,如果是,则将当前访问的Entry(put进来的Entry或get出来的Entry)移到双向链表的尾部(key不相同时,put新Entry时,会调用addEntry,它会调用creatEntry,该方法同样将新插入的元素放入到双向链表的尾部,既符合插入的先后顺序,又符合访问的先后顺序,因为这时该Entry也被访问了),否则,什么也不做。
4、注意构造方法,前四个构造方法都将accessOrder设为false,说明默认是按照插入顺序排序的,而第五个构造方法可以自定义传入的accessOrder的值,因此可以指定双向循环链表中元素的排序规则,一般要用LinkedHashMap实现LRU算法,就要用该构造方法,将accessOrder置为true。
5、LinkedHashMap并没有覆写HashMap中的put方法,而是覆写了put方法中调用的addEntry方法和recordAccess方法。