Uva-10891(dp专组B)

这篇博客详细介绍了UVA-10891(dp专组B)问题,适合初学者。文章阐述了区间DP的概念,并通过一个数组ARR为例,解释了如何计算先手在数组中取得的最大值。博主提出了两种解决方案:1)使用递归和记忆化搜索;2)从dp[i][i]开始逐步扩展。文章提供了两种思路的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(dp专组B题)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461

最适合新手看~~

据说这是一道典型的区间dp.但是没有接触过区间dp.对区间dp的理解还是有一丢丢难的.

现在有一个数组ARR.我们以dp[i][j]表示先手在ARR[i~j]数组中取得的最大值,sum[j]表示前j个数字的和.

我们取ARR中的第i到第j,构成新的数组ARR1.

现在我们的目标是求ARR[i~j]中先手A能取得的最多的数字(dp[i][j]).

我们可以这样想:

当我们取出一些数字后,就会剩下一些数字让B从中取.(剩下的数组为ARR[i~k]/ARR[k+1~j](i<=k<j)或空数组)

我们现在假设已知从剩下的所有的数组中B能取到的最大值dp[i][k]dp[k+1][j].

我们可以知道dp[i][j]= sum[j] – sum[i-1] –min(dp[i][k],dp[k+1][j],0)(i<=k<j)


到这里为止,我们有两个思路可以解决.

1)因为我们现在还不知道dp[i][k],dp[k+1][j]所以可以通过递归,记忆化搜索的方法,求得.

2)先从dp[i][i]开始求解,从小往大扩展.(dp[i][i]= sum[i] – sum[i-1])

下面为两种思路代码:


1)

#include<bits/stdc++.h>
using namespace std;
const int maxn = 110;
int dp[maxn][maxn];
int sum[maxn];
bool vis[maxn][maxn];
int dpp(int a,int b){
	if(vis[a][b])return dp[a][b];
	vis[a][b] = true;
	int m = 0;
	for(int k = a+1;k<=b;k++) m = min(m,dpp(k,b));
	for(int k = a;k<b;k++) m = min(m,dpp(a,k));
	dp[a][b] = sum[b] - sum[a-1]- m;
	return dp[a][b];

}
int main(){
	int n;
	while(cin>>n&&n){
		sum[0] = 0;
		memset(vis,false,sizeof(vis));
		for(int i = 1;i<=n;i++){
			int a;
			cin>>a;
			sum[i] = sum[i-1]+a;
		}
		cout<<2*dpp(1,n) - sum[n]<<endl;
	}
}


2)

#include<bits/stdc++.h>
using namespace std;
const int maxn = 110;
int dp[maxn][maxn];
int sum[maxn];

int main(){
	int n;
	while(cin>>n&&n){
		sum[0] = 0;
		for(int i = 1;i<=n;i++){
			int a;
			cin>>a;
			sum[i]=  sum[i-1]+a;
			dp[i][i] = a;
		}
		for(int p = 1;p<n;p++){
			for(int i = 1,j = i+p;j<=n;i++,j++){
				int m = 0;
				for(int k = i;k<j;k++){
					m = min(dp[i][k],min(dp[k+1][j],m));
				}
				dp[i][j] = sum[j] - sum[i-1] - m;
			}
		}
		cout<<dp[1][n] - (sum[n] - dp[1][n])<<endl;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值