线性判别分析(LDA)降维

线性判别分析(LDA)是一种用于特征抽取的监督算法,与PCA相似但优化分类效果。它包括数据标准化、计算类间和类内散布矩阵、求解特征值和向量等步骤,最终选择主要特征进行降维。scikit-learn库提供了LDA的实现,有助于在分类任务中降低数据维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是线性判别分析?

线性判别分析(Linear discriminant Analysis,LDA)与PCA类似也是一种特征抽取的算法,它能够提高数据分析过程中的计算效率。PCA是寻找数据集中方差最大的方向作为主成分分量的轴,而LDA是最优化分类的特征子空间。LDA和PCA都是用来降低数据维度的线性转换技巧。PCA属于无监督算法,LDA属于监督算法。相对于PCA算法而言,LDA更适合对于分类特征的提取。


上图中,叉叉表示类别1,实心圆表示类别2,LD1表示x轴,LD2表示y轴。其中,类别1和类别2都满足正态分布,我们对类别1和类别2分布在x轴和y轴上进行投影,在x轴方向上,通过线性判定,我们可以将类别1和类别2区分开,所以它是一个好的线性判定。而y轴方向的线性判定保持了数据集的较大方差,而无法将类别1和类别2进行区分,所以它不是一个好的线性判定。

二、如何来做线性判别分析?

在使用线性判别分析之前,还需要满足几个假设条件。第一个假设是数据需要满足正态分布,第二个就是各个类别数据具有相同的协方差矩阵,且样本的特征是相互独立的。即使没有满足这些条件,LDA还是可以很好的工作,LDA一共包含了6个步骤:

1、标准化处理
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

if __nam
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

修炼之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值