css3 相关伪类

1、:not()类似jQuery中的 :not()选择器,主要用来定位不匹配该选择器的元素。其用途还是很强大的,

举2个例子:

:not(footer){
    border:1px solid black;/*表示选择页面中所有元素,除了footer*/
}
input:not([type=submit]){
    ... /*给表单中所有input定义样式,除了submit按钮*/
}
2、:nth-of-type与:nth-child的区别
<div class="post"> 
    <h1>标题</h1>
    <h2>副标题</h2>
    <p>第一个段落</p>
    <p>第二个段落</p>
</div>

.post>p:nth-child(2){color:red}
.post>p:nth-of-type(2){color:red}

:nth-child( )选择的是某父元素的子元素,这个子元素并没有确切的类型;

:nth-of-type( )选择的某父元素的某子元素,这个子元素是指定的类型

内容概要:论文提出了一种名为 CLE-TFE的加密流量分框架,通过监督对比学习和多任务学习同时处理数据包级和流级分任务。主要创新点包括:1)使用监督对比学习增强数据包和流的表示;2)在字节级流量图上进行图数据增强以捕获细粒度语义不变特征;3)提出跨级多任务学习,在单一模型中同时完成两个分任务。实验表明,CLE-TFE在两个任务上均取得最佳性能,且计算开销仅为预训练模型(如 ET-BERT)的约 1/14。此外,论文还详细介绍了 CLE-TFE框架的各个组件实现,包括字节级图编码器、时序融合编码器、对比学习头等,并展示了训练流程示例和实验结果。 适合人群:具备一定机器学习和深度学习基础的研究人员、工程师,尤其是从事网络安全、流量分析等相关领域的专业人士。 使用场景及目标:①研究和开发高效的加密流量分系统;②理解监督对比学习和多任务学习在实际问题中的应用;③探索如何通过图数据增强和双层次对比学习提升模型性能。 阅读建议:由于该论文涉及较多的技术细节和数学推导,建议读者先通读全文掌握整体框架,再深入研究各模块的具体实现。在实践中可以尝试复现论文提供的代码,并根据自己的数据集调整模型结构和超参数。同时,注意理解监督对比学习和多任务学习的协同机制,这对于提升模型性能至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值