1038. Recover the Smallest Number (30)好题

本文介绍了一种通过排序算法解决的有趣问题:从一系列数字片段中恢复出可能的最小数字。利用自定义排序规则,通过比较两个片段连接后的大小确定顺序,最终实现Bubble Sort算法找出最小组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1038. Recover the Smallest Number (30)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Given a collection of number segments, you are supposed to recover the smallest number from them. For example, given {32, 321, 3214, 0229, 87}, we can recover many numbers such like 32-321-3214-0229-87 or 0229-32-87-321-3214 with respect to different orders of combinations of these segments, and the smallest number is 0229-321-3214-32-87.

Input Specification:

Each input file contains one test case. Each case gives a positive integer N (<=10000) followed by N number segments. Each segment contains a non-negative integer of no more than 8 digits. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print the smallest number in one line. Do not output leading zeros.

Sample Input:
5 32 321 3214 0229 87
Sample Output:
22932132143287
     最好和这道题一起看,觉得挺有意思 UVA - 11729 Commando War
     一道看起来很简单,写起来有点痛苦,最后解法比较有趣的题目。据说是一道面试题的改编。
     题目给你一些数字的片段( number segments),所以应当用string存储而不是int,希望拼接之后能拼出的最小的数字,这是一道很神奇的题目,我分类讨论分了很多,最后突然发现它的最终解法无比简洁。
     其实就是一个序的关系,所有的组合有n!种,(像"所谓组出最小数其实是获得字典序最小的拼接方式"这种废话我就不说了)。假设我们获得了其中的一个组合,然后又两个相邻的数字片段a,b。然后我们就要想,把a和b交换能不能使整个序列变小呢?这个问题的其实等价于b+a 是否小于a+b(此处"+"为连接符),也就是说对于这样一个序列,如果某两个相邻的元素之间发生交换可以使得整个序列的值变小,我们就应该坚决的交换啊,所以这里定义一个新的序,用<<来表示,若a+b < b + a 则a应当在b前面,即a << b。然后呢,这种序是满足传递性的若a<<b ,b << c,则a<<c,所以迭代到最后,我们就会获得一个任何两个相邻元素都不能交换的局面,也就是所谓的答案。
     这样一来我们的算法就有了,比较每两个相邻的元素,如果交换可以使得整个序列变大,就交换之,直到最后没有任何两个值之间能进行交换,啊,这不就是传说中的Bubble_Sort吗,真是一个令人激动的结论啊。对序列按照之前定义的序进行排序,如此就好了。
     
# include <cstdio>
# include <iostream>
# include <string>
using namespace std;

const int _size = 10000;
string num[_size];
bool cmp(const string& a,const string& b){return a + b< b + a;}
int main()
{
  int n,i;
  cin >> n;
  for (i=0;i<n;i++)
     cin >> num[i];
  sort(num,num+n,cmp);
  string out;
  for (i=0;i<n;i++)
      out += num[i];
  for (i=0;i<out.size()&&out[i]=='0';i++);
  if (i==out.size())
      printf("0");
  else 
      printf("%s",out.c_str()+i);
  printf("\n");
  return 0;
} 




 
ECDSA.recover is a function in the ECDSA (Elliptic Curve Digital Signature Algorithm) cryptographic system that allows a user to recover the public key from a given signature and message. This function is useful in situations where the public key is unknown but the signature and message are available. The ECDSA algorithm involves three steps: key generation, signature generation, and signature verification. In the key generation step, a private key is generated using a random number generator, and the corresponding public key is derived from the private key. In the signature generation step, a message is hashed and signed using the private key to generate a signature. In the signature verification step, the signature is verified using the public key to ensure that it was generated by the owner of the private key. In some cases, the public key may not be available, but the signature and message are known. In such cases, the ECDSA.recover function can be used to recover the public key from the signature and message. The function takes three inputs: the message, the signature, and the recovery parameter. The recovery parameter is a number between 0 and 3 that specifies which of the four possible public keys should be recovered from the signature. Once the public key is recovered, it can be used to verify the signature and authenticate the message. Overall, ECDSA.recover is a useful function in the ECDSA cryptographic system that allows for public key recovery in situations where it is unknown but the signature and message are available.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值