from sklearn.datasets import load_boston, load_iris
from sklearn.linear_model import LinearRegression
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
from sklearn import preprocessing
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import train_test_split
a = np.array([[10,2.7,3.6], [-100, 5, -2], [120, 20, 40]],dtype=np.float64)
iris1 = load_iris()
print(iris1)
iris_X = iris1.data
iris = preprocessing.scale(iris_X)
print(iris)
iris_y = iris1.target
knn = KNeighborsClassifier(n_neighbors=5)
scores = cross_val_score(knn, iris_X,iris_y,cv = 5,scoring = 'accuracy')
loss = -cross_val_score(knn, iris_X,iris_y,cv = 5,scoring = 'mean_squared_error')
print(scores.mean())