tensorflow 神经网络

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs,in_size,out_size,activation_function=None):
    Weights=tf.Variable(tf.random_normal([in_size,out_size]))
    biases=tf.Variable(tf.zeros([1,out_size])+0.1)
    Wx_plus_b=tf.matmul(inputs,Weights)+biases
    if activation_function is None:
        outputs=Wx_plus_b
    else:
        outputs=activation_function(Wx_plus_b)
    return outputs

x_data=np.linspace(-1,1,300)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape)
y_data=np.square (x_data)-0.5+noise

xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])

#输入层1个神经元,输出层1个神经元,中间层10个神经元
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction=add_layer(l1,10,1,activation_function=None)

loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),
                                  reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)

init=tf.initialize_all_variables()
sess=tf.Session()
sess.run(init)

fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion() #使不暂停
plt.show()

for i in range (1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i %50==0:
#        print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        prediction_value=sess.run(prediction,feed_dict={xs:x_data})
        lines=ax.plot(x_data,prediction_value,'r-',lw=5)
#        plt.pause(0.1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值