RNN中的hidden_state和output

import numpy as np import torch import torch.nn as nn import torch.optim as optim class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear(input_size + hidden_size, hidden_size) self.i2o = nn.Linear(input_size + hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): combined = torch.cat((input, hidden), 1) hidden = self.i2h(combined) output = self.i2o(combined) output = self.softmax(output) return output, hidden def begin_state(self, batch_size): return torch.zeros(batch_size, self.hidden_size) # 定义数据集 data = """he quick brown fox jumps over the lazy dog's back""" # 定义字符表 tokens = list(set(data)) tokens.sort() token2idx = {t: i for i, t in enumerate(tokens)} idx2token = {i: t for i, t in enumerate(tokens)} # 将字符表转化成独热向量 one_hot_matrix = np.eye(len(tokens)) # 定义模型参数 input_size = len(tokens) hidden_size = 128 output_size = len(tokens) learning_rate = 0.01 # 初始化模型优化器 model = RNN(input_size, hidden_size, output_size) optimizer = optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.NLLLoss() # 训练模型 for epoch in range(1000): model.train() state = model.begin_state(1) loss = 0 for ii in range(len(data) - 1): x_input = one_hot_matrix[token2idx[data[ii]]] y_target = torch.tensor([token2idx[data[ii + 1]]]) x_input = x_input.reshape(1, 1, -1) y_target = y_target.reshape(1) pred, state = model(torch.from_numpy(x_input), state) loss += criterion(pred, y_target) optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss.item()}")代码缩进有误,请给出正确的缩进
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值