Largest Rectangle in Histogram

本文介绍了一种求解最大直方图面积的高效算法,采用栈数据结构实现O(n)时间复杂度的解决方案。通过实例说明了算法原理及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

84. Largest Rectangle in Histogram

  • Total Accepted: 84767
  • Total Submissions: 325790
  • Difficulty: Hard
  • Contributor: LeetCode

Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given heights = [2,1,5,6,2,3],

return 10.


Java代码:

  • 66
    W
     

    For explanation, please see http://www.geeksforgeeks.org/largest-rectangle-under-histogram/

    public class Solution {
        public int largestRectangleArea(int[] height) {
            int len = height.length;
            Stack<Integer> s = new Stack<Integer>();
            int maxArea = 0;
            for(int i = 0; i <= len; i++){
                int h = (i == len ? 0 : height[i]);
                if(s.isEmpty() || h >= height[s.peek()]){
                    s.push(i);
                }else{
                    int tp = s.pop();
                    maxArea = Math.max(maxArea, height[tp] * (s.isEmpty() ? i : i - 1 - s.peek()));
                    i--;
                }
            }
            return maxArea;
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值