从源码上理解Netty并发工具-Promise

本文从Promise的基本概念出发,探讨了Promise在Netty中的源码实现,包括其监听器管理和异常处理机制。通过示例展示了Promise在异步通知和同步调用场景中的使用,并提醒注意监听器栈深度可能导致的溢出问题,同时提供了设置栈深度保护阈值的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前提

最近一直在看Netty相关的内容,也在编写一个轻量级的RPC框架来练手,途中发现了Netty的源码有很多亮点,某些实现甚至可以用苛刻来形容。另外,Netty提供的工具类也是相当优秀,可以开箱即用。这里分析一下个人比较喜欢的领域,并发方面的一个Netty工具模块 - Promise

环境版本:

  • Netty:4.1.44.Final
  • JDK1.8

Promise简介

Promise,中文翻译为承诺或者许诺,含义是人与人之间,一个人对另一个人所说的具有一定憧憬的话,一般是可以实现的。

io.netty.util.concurrent.Promise在注释中只有一句话:特殊的可写的io.netty.util.concurrent.FuturePromise接口是io.netty.util.concurrent.Future的子接口)。而io.netty.util.concurrent.Futurejava.util.concurrent.Future的扩展,表示一个异步操作的结果。我们知道,JDK并发包中的Future是不可写,也没有提供可监听的入口(没有应用观察者模式),而Promise很好地弥补了这两个问题。另一方面从继承关系来看,DefaultPromise是这些接口的最终实现类,所以分析源码的时候需要把重心放在DefaultPromise类。一般一个模块提供的功能都由接口定义,这里分析一下两个接口的功能列表:

  • io.netty.util.concurrent.Promise
  • io.netty.util.concurrent.Future

先看io.netty.util.concurrent.Future接口:

public interface Future<V> extends java.util.concurrent.Future<V> {

    // I/O操作是否执行成功
    boolean isSuccess();

    // 标记是否可以通过下面的cancel(boolean mayInterruptIfRunning)取消I/O操作
    boolean isCancellable();

    // 返回I/O操作的异常实例 - 如果I/O操作本身是成功的,此方法返回null
    Throwable cause();

    // 为当前Future实例添加监听Future操作完成的监听器 - isDone()方法激活之后所有监听器实例会得到回调
    Future<V> addListener(GenericFutureListener<? extends Future<? super V>> listener);
    Future<V> addListeners(GenericFutureListener<? extends Future<? super V>>... listeners);
    
    // 为当前Future移除监听Future操作完成的监听器
    Future<V> removeListener(GenericFutureListener<? extends Future<? super V>> listener);
    Future<V> removeListeners(GenericFutureListener<? extends Future<? super V>>... listeners);

    // 同步等待Future完成得到最终结果(成功)或者抛出异常(失败),响应中断
    Future<V> sync() throws InterruptedException;

    // 同步等待Future完成得到最终结果(成功)或者抛出异常(失败),不响应中断
    Future<V> syncUninterruptibly();

    // 等待Future完成,响应中断
    Future<V> await() throws InterruptedException;

    // 等待Future完成,不响应中断
    Future<V> awaitUninterruptibly();

    // 带超时时限的等待Future完成,响应中断
    boolean await(long timeout, TimeUnit unit) throws InterruptedException;
    boolean await(long timeoutMillis) throws InterruptedException;
    
    // 带超时时限的等待Future完成,不响应中断
    boolean awaitUninterruptibly(long timeout, TimeUnit unit);
    boolean awaitUninterruptibly(long timeoutMillis);

    // 非阻塞马上返回Future的结果,如果Future未完成,此方法一定返回null;有些场景下如果Future成功获取到的结果是null则需要二次检查isDone()方法是否为true
    V getNow();

    // 取消当前Future实例的执行,如果取消成功会抛出CancellationException异常
    @Override
    boolean cancel(boolean mayInterruptIfRunning);
}

sync()await()方法类似,只是sync()会检查异常执行的情况,一旦发现执行异常马上把异常实例包装抛出,而await()方法对异常无感知。

接着看io.netty.util.concurrent.Promise接口:

public interface Promise<V> extends Future<V> {
   
    // 标记当前Future成功,设置结果,如果设置成功,则通知所有的监听器,如果Future已经成功或者失败,则抛出IllegalStateException
    Promise<V> setSuccess(V result);

    // 标记当前Future成功,设置结果,如果设置成功,则通知所有的监听器并且返回true,否则返回false
    boolean trySuccess(V result);

    // 标记当前Future失败,设置结果为异常实例,如果设置成功,则通知所有的监听器,如果Future已经成功或者失败,则抛出IllegalStateException
    Promise<V> setFailure(Throwable cause);

    // 标记当前Future失败,设置结果为异常实例,如果设置成功,则通知所有的监听器并且返回true,否则返回false
    boolean tryFailure(Throwable cause);
    
    // 标记当前的Promise实例为不可取消,设置成功返回true,否则返回false
    boolean setUncancellable();

    // 下面的方法和io.netty.util.concurrent.Future中的方法基本一致,只是修改了返回类型为Promise

    @Override
    Promise<V> addListener(GenericFutureListener<? extends Future<? super V>> listener);

    @Override
    Promise<V> addListeners(GenericFutureListener<? extends Future<? super V>>... listeners);

    @Override
    Promise<V> removeListener(GenericFutureListener<? extends Future<? super V>> listener);

    @Override
    Promise<V> removeListeners(GenericFutureListener<? extends Future<? super V>>... listeners);

    @Override
    Promise<V> await() throws InterruptedException;

    @Override
    Promise<V> awaitUninterruptibly();

    @Override
    Promise<V> sync() throws InterruptedException;

    @Override
    Promise<V> syncUninterruptibly();
}

到此,Promise接口的所有功能都分析完毕,接下来从源码角度详细分析Promise的实现。

Promise源码实现

Promise的实现类为io.netty.util.concurrent.DefaultPromise(其实DefaultPromise还有很多子类,某些实现是为了定制特定的场景做了扩展),而DefaultPromise继承自io.netty.util.concurrent.AbstractFuture

public abstract class AbstractFuture<V> implements Future<V> {

    // 永久阻塞等待获取结果的方法
    @Override
    public V get() throws InterruptedException, ExecutionException {
        // 调用响应中断的永久等待方法进行阻塞
        await();
        // 从永久阻塞中唤醒后,先判断Future是否执行异常
        Throwable cause = cause();
        if (cause == null) {
            // 异常为空说明执行成功,调用getNow()方法返回结果
            return getNow();
        }
        // 异常为空不为空,这里区分特定的取消异常则转换为CancellationException抛出
        if (cause instanceof CancellationException) {
            throw (CancellationException) cause;
        }
        // 非取消异常的其他所有异常都被包装为执行异常ExecutionException抛出
        throw new ExecutionException(cause);
    }
    
    // 带超时阻塞等待获取结果的方法
    @Override
    public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException {
        // 调用响应中断的带超时时限等待方法进行阻塞
        if (await(timeout, unit)) {
             // 从带超时时限阻塞中唤醒后,先判断Future是否执行异常
            Throwable cause = cause();
            if (cause == null) {
                // 异常为空说明执行成功,调用getNow()方法返回结果
                return getNow();
            }
            // 异常为空不为空,这里区分特定的取消异常则转换为CancellationException抛出
            if (cause instanceof CancellationException) {
                throw (CancellationException) cause;
            }
            // 在非等待超时的前提下,非取消异常的其他所有异常都被包装为执行异常ExecutionException抛出
            throw new ExecutionException(cause);
        }
        // 方法步入此处说明等待超时,则抛出超时异常TimeoutException
        throw new TimeoutException();
    }
}

AbstractFuture仅仅对get()get(long timeout, TimeUnit unit)两个方法进行了实现,其实这两处的实现和java.util.concurrent.FutureTask中的实现方式十分相似。

DefaultPromise的源码比较多,这里分开多个部分去阅读,先看它的属性和构造函数:

public class DefaultPromise<V> extends AbstractFuture<V> implements Promise<V> {

    // 正常日志的日志句柄,InternalLogger是Netty内部封装的日志接口
    private static final InternalLogger logger = InternalLoggerFactory.getInstance(DefaultPromise.class);

    // 任务拒绝执行时候的日志句柄 - Promise需要作为一个任务提交到线程中执行,如果任务拒绝则使用此日志句柄打印日志
    private static final InternalLogger rejectedExecutionLogger =
            InternalLoggerFactory.getInstance(DefaultPromise.class.getName() + ".rejectedExecution");

    // 监听器的最大栈深度,默认值为8,这个值是防止嵌套回调调用的时候栈深度过大导致内存溢出,后面会举个例子说明它的用法
    private static final int MAX_LISTENER_STACK_DEPTH = Math.min(8,
            SystemPropertyUtil.getInt("io.netty.defaultPromise.maxListenerStackDepth", 8));
    
    // 结果更新器,用于CAS更新结果result的值
    @SuppressWarnings("rawtypes")
    private static final AtomicReferenceFieldUpdater<DefaultPromise, Object> RESULT_UPDATER =
            AtomicReferenceFieldUpdater.newUpdater(DefaultPromise.class, Object.class, "result");
    
    // 用于填充result的值,当设置结果result传入null,Promise执行成功,用这个值去表示成功的结果
    private static final Object SUCCESS = new Object();
    
    // 用于填充result的值,表示Promise不能被取消
    private static final Object UNCANCELLABLE = new Object();
    
    // CancellationException实例的持有器,用于判断Promise取消状态和抛出CancellationException
    private static final CauseHolder CANCELLATION_CAUSE_HOLDER = new CauseHolder(ThrowableUtil.unknownStackTrace(
            new CancellationException(), DefaultPromise.class, "cancel(...)"));
    
    // CANCELLATION_CAUSE_HOLDER的异常栈信息元素数组
    private static final StackTraceElement[] CANCELLATION_STACK = CANCELLATION_CAUSE_HOLDER.cause.getStackTrace();
    
    // 真正的结果对象,使用Object类型,最终有可能为null、真正的结果实例、SUCCESS、UNCANCELLABLE或者CANCELLATION_CAUSE_HOLDER等等
    private volatile Object result;
    
    // 事件执行器,这里暂时不做展开,可以理解为单个调度线程
    private final EventExecutor executor;
    
     // 监听器集合,可能是单个GenericFutureListener实例或者DefaultFutureListeners(监听器集合)实例
    private Object listeners;
    
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值