Codeforces 911E Stack Sorting

本文探讨了栈有序排列的概念,提供了一种检查给定序列是否为栈有序的方法,并在此基础上,尝试从已知部分重构完整的栈有序排列。通过算法实现,详细解释了如何在满足条件的情况下找到字典序最大的排列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

栈有序的定义:

有序列a、空栈s、空序列b。每次可选择以下操作之一:

①取出序列a的第一个元素,并压入栈s;

②取出栈s的栈顶,并加到序列b的后面。

如果最后序列b是有序的,那么序列a是栈有序的。

如有一个n的排列为栈有序的,现给出其前k项,能否还原出原排列?不能输出-1,能则输出字典序最大的答案。

思路

首先检查前k项是否合法。对于序列a中的一项,有两种去处:①它是b的下一项,加入b;②它比栈顶小,可暂时压入栈备用。如果不满足这两种情况,则a是非栈有序的。在检查过程中,b更新了以后要检查一遍栈s可否更新。

检查完毕后,如栈非空,表示缺少b的最后一项到栈顶的数,将这些数加入答案排列,并更新b。

最后将整个过程中没有用到的数加入答案。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<map>
#include<cmath>
#include<string>
#include<vector>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
#include<algorithm>
using namespace std;

#define debug(x) cout << #x << " = " << x << endl
#define lowbit(x) (x & (-x))

typedef long long LL;
typedef pair<int, int>PII;
const int maxn = 2e5 + 10;
const int inf = 0xfffffff;
const int mod = 1e9 + 7;
const double pi = acos(-1);

int a[maxn], n, k, flag = 0, q = 0;
int vis[maxn];
stack <int> T;

inline void open(string s){
	freopen((s + ".in").c_str(), "r", stdin);
	freopen((s + ".out").c_str(), "w", stdout);
}

int main()
{
	scanf("%d%d", &n, &k);
	for(int i = 1; i <= k; i++) 
	{
		scanf("%d", &a[i]);
		vis[a[i]] = 1;
	}
	int Min = n + 1;
	for(int i = 1; i <= k; i++)
	{
		if(a[i] == q + 1) 
		{
			q++;
			while(!T.empty() && T.top() == q + 1)
			{
				q++;
				T.pop();
			}
		}
		else
		{
			if(T.empty() || a[i] < T.top()) 
				T.push(a[i]);
			else 
			{
				flag = 1;
				break;
			}
		}
	}
	if(flag) 
	{
		printf("-1\n");
		return 0;
	}
	while(!T.empty())
	{
		int r = T.top() - 1, l = q + 1;
		T.pop();
		for(int i = r; i >= l; i--) 
		{
			q++;
			a[++k] = i;
			vis[i] = 1;
		}
		q++;
	}
	for(int i = 1; i <= k; i++)
	{
		if(i != 1) printf(" ");
		printf("%d", a[i]);
	}
	for(int i = n; i >= 1; i--)
	{
		if(!vis[i]) printf(" %d", i);
	}
	printf("\n");
	return 0;
}

           

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值