ML .NET 二手车价格预测之评估(三)

该博客介绍了使用ML.NET进行二手车价格预测模型的评估过程。文章提到,在模型训练后,通过RegressionCatalog.Evaluate方法进行评估,并且应当使用与训练时相同的方法。还提到了ML.NET提供的多种训练算法,并给出了评估方法RegressionMetrics以及相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在模型生成后,可以通过Evaluate方法进行评估

//注意,这里使用txt或者tsv格式的文件
string testCsvPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "TrainData", "test-data2.txt");
string modelDirectory = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Model");
string modelPath = Path.Combine(modelDirectory, "UsedCarsPricePredictionMLModel.zip");

MLContext mlContext = new MLContext(seed: 0);

ITransformer loadedModel = mlContext.Model.Load(modelPath, out _);

var testDataView = mlContext.Data.LoadFromTextFile<ModelInput>(testCsvPath, hasHeader: true);
//https://docs.microsoft.com/zh-cn/dotnet/api/microsoft.ml.data.regressionmetrics?view=ml-dotnet&WT.mc_id=DT-MVP-5003010
var testMetrics = mlContext.Regression.Evaluate(loadedModel.Transform(testDataView), labelColumnName: "Price");

//获取模型的绝对损失
vm.MeanAbsoluteError = testMetrics.MeanAbsoluteError;
/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值