Hive复合数据结构简介

一般情况下,数仓存储的数据类型都是整型(BIGINT),字符串型(STRING),浮点型(DOUBLE),但是有些时候也需要用到一些复合数据结构来存储数据,常用的复合数据结构有Map,Array,Struct,本文将主要针对这三种数据类型做一个介绍

1、定义

类型定义方法描述
ArrayARRAY < data_type >Array数组,主要是是以数组形式存储可以通过字段名[0]进行访问,其中0表示的是数组中的第一位,以此类推
MapMAP < primitive_type, data_type >Map数据类型,主要是以K:V形式进行存储可以通过字段名[‘key’]进行访问,将返回这个key对应的Value
StructSTRUCT < col_name : data_type [COMMENT col_comment], …>Struct结构体,主要以结构体形式进行存储可以通过字段名.列名进行访问,其中列名就是定义中的col_name

2、举例

2.1 Map举例

# 创建数据库表
create table score
    (
        name string
       , score map<string,int>
    )
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':';
 
# 要入库的数据
biansutao '数学':80,'语文':89,'英语':95
jobs '语文':60,'数学':80,'英语':99
# 入库数据
LOAD DATA LOCAL INPATH '/home/hadoop/score.txt' OVERWRITE INTO TABLE score;
# 查询
hive> select * from score;
biansutao       {"数学":80,"语文":89,"英语":95}
jobs    {"语文":60,"数学":80,"英语":99}
Time taken: 0.665 seconds
hive> select name from score;
jobs
biansutao
Time taken: 19.778 seconds
hive> select t.score from score t;
{"语文":60,"数学":80,"英语":99}
{"数学":80,"语文":89,"英语":95}
Time taken: 19.353 seconds
hive> select t.score['语文'] from score t;
60
89
Time taken: 13.054 seconds
hive> select t.score['英语'] from score t;
99
95
Time taken: 13.769 seconds

2.2 Array举例

# 创建数据库表,以array作为数据类型
create table  person(
    name string
    ,work_locations array<string>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
# 数据
biansutao beijing,shanghai,tianjin,hangzhou
linan changchu,chengdu,wuhan
# 入库数据
LOAD DATA LOCAL INPATH '/home/hadoop/person.txt' OVERWRITE INTO TABLE person;
# 查询
hive> select * from person;
biansutao       ["beijing","shanghai","tianjin","hangzhou"]
linan   ["changchu","chengdu","wuhan"]
Time taken: 0.355 seconds
hive> select name from person;
linan
biansutao
Time taken: 12.397 seconds
hive> select work_locations[0] from person;
changchu
beijing
Time taken: 13.214 seconds
hive> select work_locations from person;  
["changchu","chengdu","wuhan"]
["beijing","shanghai","tianjin","hangzhou"]
Time taken: 13.755 seconds
hive> select work_locations[3] from person;
NULL
hangzhou
Time taken: 12.722 seconds
hive> select work_locations[4] from person;
NULL
NULL
Time taken: 15.958 seconds

2.3 Struct举例

# 创建数据表
CREATE TABLE test(
    id int
    ,course struct<course:string,score:int>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
# 数据
1 english,80
2 math,89
3 chinese,95
# 入库
LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;
# 查询
hive> select * from test;
OK
1       {"course":"english","score":80}
2       {"course":"math","score":89}
3       {"course":"chinese","score":95}
Time taken: 0.275 seconds
hive> select course from test;
{"course":"english","score":80}
{"course":"math","score":89}
{"course":"chinese","score":95}
Time taken: 44.968 seconds
select t.course.course from test t;
english
math
chinese
Time taken: 15.827 seconds
hive> select t.course.score from test t;
80
89
95
Time taken: 13.235 seconds
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值