深度分析 Golang sync.Pool 底层原理

sync.Pool 是 Golang 内置的对象池技术,可用于缓存临时对象,以缓解因频繁建立临时对象带来的性能损耗以及对 GC 带来的压力。

在许多知名的开源库中都可以看到 sync.Pool 的大量使用。例如,HTTP 框架 Gin 用 sync.Pool 来复用每个请求都会创建的 gin.Context 对象。 在 grpc-Go、kubernetes 等也都可以看到对 sync.Pool 的身影。

但需要注意的是,sync.Pool 缓存的对象随时可能被无通知的清除,因此不能将 sync.Pool 用于存储持久对象的场景。

sync.Pool 作为 goroutine 内置的官方库,其设计非常精妙。sync.Pool 不仅是并发安全的,而且实现了 lock free,里面有许多值得学习的知识点。

本文将基于 go-1.16 的源码 对 sync.Pool 的底层实现一探究竟。

基本用法

在正式讲 sync.Pool 底层之前,我们先看下 sync.Pool 的基本用法。其示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
type Test struct {
	A int
}

func main() {
	pool := sync.Pool{
		New: func() interface{} {
			return &Test{
				A: 1,
			}
		},
	}

	testObject := pool.Get().(*Test)
	println(testObject.A) // print 1

	pool.Put(testObject)
}

sync.Pool 在初始化的时候,需要用户提供一个对象的构造函数 New。用户使用 Get 来从对象池中获取对象,使用 Put 将对象归还给对象池。整个用法还是比较简单的。

接下来,让我们详细看下 sync.Pool 是如何实现的。

sync.Pool 的底层实现

在讲 sync.Pool 之前,我们先聊下 Golang 的 GMP 调度。在 GMP 调度模型中,M 代表了系统线程,而同一时间一个 M 上只能同时运行一个 P。那么也就意味着,从线程维度来看,在 P 上的逻辑都是单线程执行的。

sync.Pool 就是充分利用了 GMP 这一特点。对于同一个 sync.Pool ,它在每个 P 上都分配了一个本地对象池 poolLocal。如下图所示。

sync.Pool

sync.Pool 的 代码定义如下 sync/pool.go#L44:

1
2
3
4
5
6
7
8
9
10
11
type Pool struct {
	noCopy noCopy

	local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
	localSize uintptr        // size of the local array

	victim     unsafe.Pointer // local from previous cycle
	victimSize uintptr        // size of victims array

	New func() interface{}
}

其中,我们需要着重关注以下三个字段:

  • local 是个数组,长度为 P 的个数。其元素类型是 poolLocal。这里面存储着各个 P 对应的本地对象池。可以近似的看做 [P]poolLocal
  • localSize。代表 local 数组的长度。因为 P 可以在运行时通过调用 runtime.GOMAXPROCS 进行修改, 因此我们还是得通过 localSize 来对应 local 数组的长度。
  • New 就是用户提供的创建对象的函数。这个选项也不是必需。当不填的时候,Get 有可能返回 nil。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值