What does C# delegate do?

本文通过一个员工薪资排序的例子,展示了C#中如何使用泛型和委托进行灵活的算法实现。具体介绍了BubbleSorter类的静态方法Sort,该方法接受一个泛型列表和一个比较函数作为参数,实现了冒泡排序算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Skimming through a book about .NET C#, I was attracted to its language features different from C/C++. Delegate is a known feature from JAVA series language which draw my attention when I skip-read this C# book. Here I will talk something which I comprehend from "delegation". I will not give a demonstration only "what can delegate do", but this demonstration is also "you can hardly compose this class without delegate" :

 

static public void Sort<T>(IList<T> sortArray, Func<T, T, bool> comparison)

class BubbleSorter

{

  static public void Sort<T>(IList<T> sortArray, Func<T, T, bool> comparison)

  {

    bool swapped = true;

    do

    {

      swapped = false;

      for (int i = 0; i < sortArray.Count - 1; i ++)

      {

        if (comparison(sortArray[ i + 1 ], sortArray[ i ]))

        {

          T temp = sortArray[ i ];

          sortArray[ i ] = sortArray[ i + 1 ];

          sortArray[ i + 1 ] = temp;

          swapped = true;

        }

      }

    }  while (swapped);

  }

}

 

It's a Class of Generic which is a Class of algorithm bubbleSort. To use this class, we gotta define another class, which in case a phone company as a employee list, and he wants it sorted by their salary.

 

class Employee

{

  public Employee(string name, decimal salary)

  {

    Name = name;

    Salary = salary;

  }

  public string Name { get; }

  public decimal Salary ( get; private set; }

  public override string ToString() => $"{Name}, {Salary:C}";

  public static bool CompareSalary(Employee e1, Employee e2) => e1.Salary < e2.Salary;

}

 

We have to define the "bool CompareSalary" with 2 parameters "Employee e1" and "Employee e2" to match the signature of Func<T, T, bool>

Now it's time to client code:

 

using static System.Console;

namespace Wrox.ProCSharp.Delegates

{

  class Program

  {

    static void Main()

    {

      Employee[ ] employee = 

      {

        new Emplyee ("Richy Ortiz", 15000),

        new Emplyee ("Nuckle Du", 25000),

        new Emplyee ("Justin Wong", 30000)

      };

      BubbleSorted.Sort( employees, Employee.CompareSalary);

      foreach (var employee in employees)

      {

        WriteLine(employee);

      }

    }

  }

}

 

We finally sorted the list by salary cuz of we used Func<T, T, bool> and generic, which let us compare between object(more than just between a default type).

"Func<T, T, bool>" is kinda delegate without the key word  "delegate".

内容概要:本文针对国内加密货币市场预测研究较少的现状,采用BP神经网络构建了CCi30指数预测模型。研究选取2018年3月1日至2019年3月26日共391天的数据作为样本,通过“试凑法”确定最优隐结点数目,建立三层BP神经网络模型对CCi30指数收盘价进行预测。论文详细介绍了数据预处理、模型构建、训练及评估过程,包括数据归一化、特征工程、模型架构设计(如输入层、隐藏层、输出层)、模型编译与训练、模型评估(如RMSE、MAE计算)以及结果可视化。研究表明,该模型在短期内能较准确地预测指数变化趋势。此外,文章还讨论了隐层节点数的优化方法及其对预测性能的影响,并提出了若干改进建议,如引入更多技术指标、优化模型架构、尝试其他时序模型等。 适合人群:对加密货币市场预测感兴趣的研究人员、投资者及具备一定编程基础的数据分析师。 使用场景及目标:①为加密货币市场投资者提供一种新的预测工具和方法;②帮助研究人员理解BP神经网络在时间序列预测中的应用;③为后续研究提供改进方向,如数据增强、模型优化、特征工程等。 其他说明:尽管该模型在短期内表现出良好的预测性能,但仍存在一定局限性,如样本量较小、未考虑外部因素影响等。因此,在实际应用中需谨慎对待模型预测结果,并结合其他分析工具共同决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值