POJ 3620 Avoid The Lakes(连通分量,DFS)

本文介绍了一个关于计算二维网格中最大淹没区域的算法问题及其解决方案。通过深度优先搜索(DFS)来确定由指定坐标点定义的最大连通区域的大小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7825 Accepted: 4131

Description

Farmer John's farm was flooded in the most recent storm, a fact only aggravated by the information that his cows are deathly afraid of water. His insurance agency will only repay him, however, an amount depending on the size of the largest "lake" on his farm.

The farm is represented as a rectangular grid with N (1 ≤ N ≤ 100) rows and M (1 ≤ M ≤ 100) columns. Each cell in the grid is either dry or submerged, and exactly K (1 ≤ K ≤ N × M) of the cells are submerged. As one would expect, a lake has a central cell to which other cells connect by sharing a long edge (not a corner). Any cell that shares a long edge with the central cell or shares a long edge with any connected cell becomes a connected cell and is part of the lake.

Input

* Line 1: Three space-separated integers: NM, and K
* Lines 2..K+1: Line i+1 describes one submerged location with two space separated integers that are its row and column: R and C

Output

* Line 1: The number of cells that the largest lake contains. 

Sample Input

3 4 5
3 2
2 2
3 1
2 3
1 1

Sample Output

4

Source



题意:

这英文写的,翻译的。。。。。有道都救不了!

给你一个 N*M 的矩形,以及 K 个坐标点作为淹没的标记,问你最大的淹没区域是多少。


思路:

利用 DFS 计算每个连通分量的大小比较后取最大值。


代码:

#include<stdio.h>
#include<string.h> 
#define MYDD 1103

//N (1 ≤ N ≤ 100) rows and M (1 ≤ M ≤ 100) columns 行,列
// either dry or submerged 干燥或者淹没
int N,M,K;
int map[128][128];//记录淹没的坐标点 
int sum;//遍历当前的淹没面积
int max_sum;//最大的淹没面积 
int dx[]= {0,0,-1,1};
int dy[]= {-1,1,0,0};//移动的四个方向 

void DFS(int x,int y) {
	sum++;
	if(!map[x][y])//该点不被淹没 
		return ;
	map[x][y]=0;//标记访问,即干燥 
	for(int j=0; j<4; j++) {
		int gx=x+dx[j];
		int gy=y+dy[j];
		if(gx>=1&&gx<=N&&gy>=1&&gy<=M&&map[gx][gy])
			DFS(gx,gy);
	}
}

int main() {
	while(scanf("%d%d%d",&N,&M,&K)!=EOF) {
		max_sum=0;
		memset(map,0,sizeof(map));
		int row,column;

		for(int j=0; j<K; j++) {
			scanf("%d%d",&row,&column);
			map[row][column]=1;
		}

		for(int j=1; j<=N; j++) {
			for(int k=1; k<=M; k++) {
				if(map[j][k]) {
					sum=0;
					DFS(j,k);
					if(sum>max_sum)
						max_sum=sum;
				}
			}
		}

		printf("%d\n",max_sum);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值