KMP算法小结

本文介绍了KMP算法的原理和步骤,包括如何求解next数组,以及算法在匹配过程中的时间复杂度分析。通过实例展示了KMP算法如何处理文本串和模式串的匹配,失配时如何利用next数组进行有效移动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文本串长度为n,模式串长度为m,匹配过程的时间复杂度为O(n),计算next的O(m)时间,KMP的整体时间复杂度为O(m + n)。

步骤:

文本串S = “BBC ABCDAB ABCDABCDABDE

模式串P = “ABCDABD”

1.寻找P的 最长公共元素表(前后缀最长序列长度)


失配时,模式串向右移动的位数为:已匹配字符数 - 失配字符的上一位字符所对应的最大长度值

2. 求next 数组(相当于“最大长度值” 整体向右移动一位,然后初始值赋为-1)


失配时,模式串向右移动的位数为:失配字符所在位置 - 失配字符对应的next值

void GetNext(char* p,int next[])  
{  
    int pLen = strlen(p);  
    next[0] = -1;  
    int k = -1;  
    int j = 0;  
    while (j < pLen - 1)  
    {  
        //p[k]表示前缀,p[j]表示后缀  
        if (k == -1 || p[j] == p[k])   
        {  
            ++k;  
            ++j;  
            next[j] = k;  
        }  
        else   
        {  
            k = next[k];  
        }  
    }  
}
优化后
void GetNextval(char* p, int next[])  
{  
    int pLen = strlen(p);  
    next[0] = -1;  
    int k = -1;  
    int j = 0;  
    while (j < pLen - 1)  
    {  
        //p[k]表示前缀,p[j]表示后缀    
        if (k == -1 || p[j] == p[k])  
        {  
            ++j;  
            ++k;  
            //较之前next数组求法,改动在下面4行  
            if (p[j] != p[k])  
                next[j] = k;   //之前只有这一行  
            else  
                //因为不能出现p[j] = p[ next[j ]],所以当出现时需要继续递归,k = next[k] = next[next[k]]  
                next[j] = next[k];  
        }  
        else  
        {  
            k = next[k];  
        }  
    }  
}

3. KMP的算法流程

假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置

如果j = -1,或者当前字符匹配成功(即S[i] == P[j]),都令i++,j++,继续匹配下一个字符;

如果j != -1,且当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j]。此举意味着失配时,模式串P相对于文本串S

向右移动了j - next [j] 位。

int KmpSearch(char* s, char* p)  
{  
    int i = 0;  
    int j = 0;  
    int sLen = strlen(s);  
    int pLen = strlen(p);  
    while (i < sLen && j < pLen)  
    {  
        //①如果j = -1,或者当前字符匹配成功(即S[i] == P[j]),都令i++,j++      
        if (j == -1 || s[i] == p[j])  
        {  
            i++;  
            j++;  
        }  
        else  
        {  
            //②如果j != -1,且当前字符匹配失败(即S[i] != P[j]),则令 i 不变,j = next[j]      
            //next[j]即为j所对应的next值        
            j = next[j];  
        }  
    }  
    if (j == pLen)  
        return i - j;  
    else  
        return -1;  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值