The Magical container_of() Macro and typeof()

本文深入解析Linux内核中的container_of宏,从其原理到具体实现细节,详细阐述了如何通过该宏获取容器结构的成员指针。通过实际代码示例,逐步拆解宏的构造,解释其内部机制,最终揭示了宏背后的巧妙设计。

When you begin with the kernel, and you start to look around and read thecode, you will eventually come across this magical preprocessor construct.

What does it do? Well, precisely what its name indicates. It takes threearguments – a pointer, type of the container, and the name of the memberthe pointer refers to. The macro will then expand to a new address pointing tothe container which accommodates the respective member. It is indeed aparticularly clever macro, but how the hell can this possibly work? Let meillustrate…

The first diagram illustrates the principle of the container_of(ptr, type,member) macro for who might find the above description too clumsy.

The container_of macro Illustration of how the containter_of macro works.

Bellow is the actual implementation of the macro from Linux Kernel:

#define container_of(ptr, type, member) ({                      \
        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
        (type *)( (char *)__mptr - offsetof(type,member) );})

At first glance, this might look like a whole lot of magic, but it isn’t quiteso. Let’s take it step by step.

Statements in Expressions

The first thing to gain your attention might be the structure of the wholeexpression. The statement should return a pointer, right? But there is justsome kind of weird ({}) block with two statements in it. This in fact is aGNU extension to C language called braced-group within expression. Thecompiler will evaluate the whole block and use the value of the last statementcontained in the block. Take for instance the following code. It will print 5.

int x = ({1; 2;}) + 3;
printf("%d\n", x);

typeof()

This is a non-standard GNU C extension. It takes one argument and returns itstype. Its exact semantics is throughly described in gccdocumentation.

int x = 5;
typeof(x) y = 6;
printf("%d %d\n", x, y);

Zero Pointer Dereference

But what about the zero pointer dereference? Well, it’s a little pointer magicto get the type of the member. It won’t crash, because the expression itselfwill never be evaluated. All the compiler cares for is its type. The samesituation occurs in case we ask back for the address. The compiler againdoesn’t care for the value, it will simply add the offset of the member to theaddress of the structure, in this particular case 0, and return the newaddress.

struct s {
        char m1;
        char m2;
};

/* This will print 1 */
printf("%d\n", &((struct s*)0)->m2);

Also note that the following two definitions are equivalent:

typeof(((struct s *)0)->m2) c;
char c;

offsetof(st, m)

This macro will return a byte offset of a member to the beginning of thestructure. It is even part of the standard library (available in stddef.h ).Not in the kernel space though, as the standard C library is not present there.It is a little bit of the same 0 pointer dereference magic as we saw earlierand to avoid that modern compilers usually offer a built-in function, thatimplements that. Here is the messy version (from the kernel):

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

It returns an address of a member called MEMBER of a structure of type TYPEthat is stored in memory from address 0 (which happens to be the offset we’relooking for).

Putting It All Together

#define container_of(ptr, type, member) ({                      \
        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
        (type *)( (char *)__mptr - offsetof(type,member) );})

When you look more closely at the original definition from the beginning ofthis post, you will start wondering if the first line is really good foranything. You will be right. The first line is not intrinsically important forthe result of the macro, but it is there for type checking purposes. And whatthe second line really does? It subtracts the offset of the structure’smember from its address yielding the address of the container structure.That’s it!

After you strip all the magical operators, constructs and tricks, it is thatsimple :-).

References


转自:http://broken.build/2012/11/10/magical-container_of-macro/
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
<think>好的,用户需要生成一个由生物发光蘑菇和植物照明的魔法森林场景。首先,得理解用户的需求是图像生成,可能需要指导如何使用工具如MidJourney或DALL-E。用户可能没有明确说明使用的工具,所以需要涵盖不同方法。 接下来,考虑结构。按照任务要求,分成多个方法或步骤,避免使用第一人称和步骤词汇。可能需要包括AI工具选择、提示词优化、手动设计工具和后期处理技巧。 然后,每个部分需要具体的操作步骤。例如,在AI工具部分,要列出具体平台和示例提示词,确保用户可以直接复制使用。提示词优化部分要强调关键词的组合和视觉细节,帮助用户生成更精准的图像。 手动设计部分,需要推荐图形设计软件,并提供分步指导,比如创建背景、添加蘑菇和植物、调整发光效果。这里要确保步骤清晰,用户即使没有经验也能跟随。 后期处理技巧要提到常用的工具如Photoshop或免费替代品,说明如何调整色彩和添加光晕效果,增强图像的真实感。 最后,检查是否整合了搜索到的信息,确保引用的内容分散在回答中,不集中在末尾。同时,确保数学公式和代码格式正确,但这个问题可能不涉及,所以可能不需要。 相关问题部分需要基于用户的问题和回答内容,提出三个相关的问题,比如工具比较、生物发光植物的设计技巧、提升真实感的方法等。要确保问题有逻辑关联,帮助用户进一步探索。</think>To generate a scene of a magical forest illuminated by bioluminescent mushrooms and plants, follow these methods using AI tools and design principles: **Method 1: AI Text-to-Image Generation** Use platforms like MidJourney, DALL-E 3, or Stable Diffusion with optimized prompts: ``` /imagine prompt: Enchanted forest with giant bioluminescent mushrooms emitting soft blue-purple glow, glowing vines缠绕 ancient trees, floating pollen particles, ethereal mist, hyper-detailed 4k rendering, fantasy atmosphere, cinematic lighting --ar 16:9 ``` Adjust parameters like `--v 6` for MidJourney's latest model or `--style fantasy` for specific artistic effects. **Method 2: Manual Design with Digital Tools** 1. Create base terrain using fractal noise patterns in Photoshop ($f(x,y) = \sum_{k=1}^{n} \frac{1}{2^k} \cos(2^k x + \phi_k)$) 2. Add glowing elements with layer styles: - Outer Glow: Screen blend mode, 5-10px size - Inner Glow: Linear Dodge, 3-7px size 3. Use custom brushes for mushroom clusters (spore density: $ρ = N/V$ where $N$=particle count, $V$=volume) **Method 3: 3D Rendering Techniques** Implement subsurface scattering for organic glow effects in Blender: ```python # Node setup for bioluminescent material shader = PrincipledBSDF() shader.subsurface = 0.3 shader.emission_strength = 2.5 shader.inputs['Emission Color'] = (0.2, 0.8, 1.0, 1) ``` **Color Palette Recommendations** - Mushroom caps: #6B2CEE → #A78BFA (gradient) - Plant glow: #00F5A0 (core) → #00B4D8 (halo) - Background: #1A1C22 with #2D3748 accents
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值