LinkedBlockingQueue是一个单向链表实现的阻塞队列。该队列按 FIFO(先进先出)排序元素,新元素插入到队列的尾部,并且队列获取操作会获得位于队列头部的元素。链接队列的吞吐量通常要高于基于数组的队列,但是在大多数并发应用程序中,其可预知的性能要低。
此外,LinkedBlockingQueue还是可选容量的(防止过度膨胀),即可以指定队列的容量。如果不指定,默认容量大小等于Integer.MAX_VALUE。
看一下LinkedBlockingQueue类中定义的重要变量和Node节点,如下:
- // 链表的节点定义
- static class Node<E> {
- E item;
- Node<E> next;
- Node(E x) { item = x; }
- }
- private final int capacity; // 链表的容量,可以在创建链表时指定
- private final AtomicInteger count = new AtomicInteger(0);// 记录队列元素个数
- private transient Node<E> head; // 链表的表头。取出数据时,都是从表头head处插入
- private transient Node<E> last; // 链表的表尾。新增数据时,都是从表尾last处插入
- // putLock是插入锁,takeLock是取出锁;notEmpty是非空条件,notFull是未满条件。通过它们对链表进行并发控制
- private final ReentrantLock takeLock = new ReentrantLock();
- private final Condition notEmpty = takeLock.newCondition();
- private final ReentrantLock putLock = new ReentrantLock();
- private final Condition notFull = putLock.newCondition();
// 链表的节点定义
static class Node<E> {
E item;
Node<E> next;
Node(E x) { item = x; }
}
private final int capacity; // 链表的容量,可以在创建链表时指定
private final AtomicInteger count = new AtomicInteger(0);// 记录队列元素个数
private transient Node<E> head; // 链表的表头。取出数据时,都是从表头head处插入
private transient Node<E> last; // 链表的表尾。新增数据时,都是从表尾last处插入
// putLock是插入锁,takeLock是取出锁;notEmpty是非空条件,notFull是未满条件。通过它们对链表进行并发控制
private final ReentrantLock takeLock = new ReentrantLock();
private final Condition notEmpty = takeLock.newCondition();
private final ReentrantLock putLock = new ReentrantLock();
private final Condition notFull = putLock.newCondition();
看一下主要的两个构造函数,如下:
- public LinkedBlockingQueue(int capacity) {
- if (capacity <= 0) throw new IllegalArgumentException();
- this.capacity = capacity;
- last = head = new Node<E>(null);
- }
- public LinkedBlockingQueue(Collection<? extends E> c) {
- this(Integer.MAX_VALUE);
- final ReentrantLock putLock = this.putLock;
- putLock.lock(); // Never contended, but necessary for visibility
- try {
- int n = 0;
- for (E e : c) {
- if (e == null)
- throw new NullPointerException();
- if (n == capacity)
- throw new IllegalStateException("Queue full");
- enqueue(new Node<E>(e));
- ++n;
- }
- count.set(n);
- } finally {
- putLock.unlock();
- }
- }
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}
public LinkedBlockingQueue(Collection<? extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // Never contended, but necessary for visibility
try {
int n = 0;
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (n == capacity)
throw new IllegalStateException("Queue full");
enqueue(new Node<E>(e));
++n;
}
count.set(n);
} finally {
putLock.unlock();
}
}
将c容器中的元素做为Node节点的值添加到链表中,如下:
- private void enqueue(Node<E> node) {
- // assert putLock.isHeldByCurrentThread();
- // assert last.next == null;
- last = last.next = node;
- }
private void enqueue(Node<E> node) {
// assert putLock.isHeldByCurrentThread();
// assert last.next == null;
last = last.next = node;
}
将node节点添加到last.next节点后面,并将last.next节点的值赋给last.
- public void put(E e) throws InterruptedException {
- if (e == null) throw new NullPointerException();
- // Note: convention in all put/take/etc is to preset local var
- // holding count negative to indicate failure unless set.
- int c = -1;
- Node<E> node = new Node(e);
- final ReentrantLock putLock = this.putLock;
- final AtomicInteger count = this.count;
- putLock.lockInterruptibly();
- try {
- /*
- * Note that count is used in wait guard even though it is
- * not protected by lock. This works because count can
- * only decrease at this point (all other puts are shut
- * out by lock), and we (or some other waiting put) are
- * signalled if it ever changes from capacity. Similarly
- * for all other uses of count in other wait guards.
- */
- while (count.get() == capacity) {
- notFull.await();
- }
- enqueue(node);
- c = count.getAndIncrement();
- if (c + 1 < capacity)
- notFull.signal();
- } finally {
- putLock.unlock();
- }
- if (c == 0)
- signalNotEmpty();
- }
- /**
- * Inserts the specified element at the tail of this queue, waiting if
- * necessary up to the specified wait time for space to become available.
- */
- public boolean offer(E e, long timeout, TimeUnit unit)
- throws InterruptedException {
- if (e == null) throw new NullPointerException();
- long nanos = unit.toNanos(timeout);
- int c = -1;
- final ReentrantLock putLock = this.putLock;
- final AtomicInteger count = this.count;
- putLock.lockInterruptibly();
- try {
- while (count.get() == capacity) {
- if (nanos <= 0)
- return false;
- nanos = notFull.awaitNanos(nanos);
- }
- enqueue(new Node<E>(e));
- c = count.getAndIncrement();
- if (c + 1 < capacity)
- notFull.signal();
- } finally {
- putLock.unlock();
- }
- if (c == 0)
- signalNotEmpty();
- return true;
- }
- /**
- * Inserts the specified element at the tail of this queue if it is
- * possible to do so immediately without exceeding the queue's capacity,
- */
- public boolean offer(E e) {
- if (e == null) throw new NullPointerException();
- final AtomicInteger count = this.count;
- if (count.get() == capacity)
- return false;
- int c = -1;
- Node<E> node = new Node(e);
- final ReentrantLock putLock = this.putLock;
- putLock.lock();
- try {
- if (count.get() < capacity) {
- enqueue(node);
- c = count.getAndIncrement();
- if (c + 1 < capacity)
- notFull.signal();
- }
- } finally {
- putLock.unlock();
- }
- if (c == 0)
- signalNotEmpty();
- return c >= 0;
- }
public void put(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
// Note: convention in all put/take/etc is to preset local var
// holding count negative to indicate failure unless set.
int c = -1;
Node<E> node = new Node(e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
/*
* Note that count is used in wait guard even though it is
* not protected by lock. This works because count can
* only decrease at this point (all other puts are shut
* out by lock), and we (or some other waiting put) are
* signalled if it ever changes from capacity. Similarly
* for all other uses of count in other wait guards.
*/
while (count.get() == capacity) {
notFull.await();
}
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
}
/**
* Inserts the specified element at the tail of this queue, waiting if
* necessary up to the specified wait time for space to become available.
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) throw new NullPointerException();
long nanos = unit.toNanos(timeout);
int c = -1;
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
putLock.lockInterruptibly();
try {
while (count.get() == capacity) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
enqueue(new Node<E>(e));
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return true;
}
/**
* Inserts the specified element at the tail of this queue if it is
* possible to do so immediately without exceeding the queue's capacity,
*/
public boolean offer(E e) {
if (e == null) throw new NullPointerException();
final AtomicInteger count = this.count;
if (count.get() == capacity)
return false;
int c = -1;
Node<E> node = new Node(e);
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
if (count.get() < capacity) {
enqueue(node);
c = count.getAndIncrement();
if (c + 1 < capacity)
notFull.signal();
}
} finally {
putLock.unlock();
}
if (c == 0)
signalNotEmpty();
return c >= 0;
}
2、删除元素
- public boolean remove(Object o) {
- if (o == null) return false;
- fullyLock();
- try {
- for (Node<E> trail = head, p = trail.next;
- p != null;
- trail = p, p = p.next) {
- if (o.equals(p.item)) {
- unlink(p, trail);
- return true;
- }
- }
- return false;
- } finally {
- fullyUnlock();
- }
- }
- public E take() throws InterruptedException {
- E x;
- int c = -1;
- final AtomicInteger count = this.count;
- final ReentrantLock takeLock = this.takeLock;
- takeLock.lockInterruptibly();
- try {
- while (count.get() == 0) {
- notEmpty.await();
- }
- x = dequeue();
- c = count.getAndDecrement();
- if (c > 1)
- notEmpty.signal();
- } finally {
- takeLock.unlock();
- }
- if (c == capacity)
- signalNotFull();
- return x;
- }
- public E poll(long timeout, TimeUnit unit) throws InterruptedException {
- E x = null;
- int c = -1;
- long nanos = unit.toNanos(timeout);
- final AtomicInteger count = this.count;
- final ReentrantLock takeLock = this.takeLock;
- takeLock.lockInterruptibly();
- try {
- while (count.get() == 0) {
- if (nanos <= 0)
- return null;
- nanos = notEmpty.awaitNanos(nanos);
- }
- x = dequeue();
- c = count.getAndDecrement();
- if (c > 1)
- notEmpty.signal();
- } finally {
- takeLock.unlock();
- }
- if (c == capacity)
- signalNotFull();
- return x;
- }
- public E poll() {
- final AtomicInteger count = this.count;
- if (count.get() == 0)
- return null;
- E x = null;
- int c = -1;
- final ReentrantLock takeLock = this.takeLock;
- takeLock.lock();
- try {
- if (count.get() > 0) {
- x = dequeue();
- c = count.getAndDecrement();
- if (c > 1)
- notEmpty.signal();
- }
- } finally {
- takeLock.unlock();
- }
- if (c == capacity)
- signalNotFull();
- return x;
- }
public boolean remove(Object o) {
if (o == null) return false;
fullyLock();
try {
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (o.equals(p.item)) {
unlink(p, trail);
return true;
}
}
return false;
} finally {
fullyUnlock();
}
}
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
notEmpty.await();
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
public E poll() {
final AtomicInteger count = this.count;
if (count.get() == 0)
return null;
E x = null;
int c = -1;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
if (count.get() > 0) {
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
}
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
3、删除元素
- public E peek() {
- if (count.get() == 0)
- return null;
- final ReentrantLock takeLock = this.takeLock;
- takeLock.lock();
- try {
- Node<E> first = head.next;
- if (first == null)
- return null;
- else
- return first.item;
- } finally {
- takeLock.unlock();
- }
- }
public E peek() {
if (count.get() == 0)
return null;
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();
try {
Node<E> first = head.next;
if (first == null)
return null;
else
return first.item;
} finally {
takeLock.unlock();
}
}
4、迭代元素
public Iterator<E> iterator() {
return new Itr();
}
- private class Itr implements Iterator<E> {
- // 当前节点
- private Node<E> current;
- // 上一次返回的节点
- private Node<E> lastRet;
- // 当前节点对应的值
- private E currentElement;
- Itr() {
- // 同时获取“插入锁putLock” 和 “取出锁takeLock”
- fullyLock();
- try {
- // 设置“当前元素”为“队列表头的下一节点”,即为队列的第一个有效节点
- current = head.next;
- if (current != null)
- currentElement = current.item;
- } finally {
- // 释放“插入锁putLock” 和 “取出锁takeLock”
- fullyUnlock();
- }
- }
- // 返回“下一个节点是否为null”
- public boolean hasNext() {
- return current != null;
- }
- private Node<E> nextNode(Node<E> p) {
- for (;;) {
- Node<E> s = p.next;
- if (s == p)
- return head.next;
- if (s == null || s.item != null)
- return s;
- p = s;
- }
- }
- // 返回下一个节点
- public E next() {
- fullyLock();
- try {
- if (current == null)
- throw new NoSuchElementException();
- E x = currentElement;
- lastRet = current;
- current = nextNode(current);
- currentElement = (current == null) ? null : current.item;
- return x;
- } finally {
- fullyUnlock();
- }
- }
- // 删除下一个节点
- public void remove() {
- if (lastRet == null)
- throw new IllegalStateException();
- fullyLock();
- try {
- Node<E> node = lastRet;
- lastRet = null;
- for (Node<E> trail = head, p = trail.next;
- p != null;
- trail = p, p = p.next) {
- if (p == node) {
- unlink(p, trail);
- break;
- }
- }
- } finally {
- fullyUnlock();
- }
- }
- }
private class Itr implements Iterator<E> {
// 当前节点
private Node<E> current;
// 上一次返回的节点
private Node<E> lastRet;
// 当前节点对应的值
private E currentElement;
Itr() {
// 同时获取“插入锁putLock” 和 “取出锁takeLock”
fullyLock();
try {
// 设置“当前元素”为“队列表头的下一节点”,即为队列的第一个有效节点
current = head.next;
if (current != null)
currentElement = current.item;
} finally {
// 释放“插入锁putLock” 和 “取出锁takeLock”
fullyUnlock();
}
}
// 返回“下一个节点是否为null”
public boolean hasNext() {
return current != null;
}
private Node<E> nextNode(Node<E> p) {
for (;;) {
Node<E> s = p.next;
if (s == p)
return head.next;
if (s == null || s.item != null)
return s;
p = s;
}
}
// 返回下一个节点
public E next() {
fullyLock();
try {
if (current == null)
throw new NoSuchElementException();
E x = currentElement;
lastRet = current;
current = nextNode(current);
currentElement = (current == null) ? null : current.item;
return x;
} finally {
fullyUnlock();
}
}
// 删除下一个节点
public void remove() {
if (lastRet == null)
throw new IllegalStateException();
fullyLock();
try {
Node<E> node = lastRet;
lastRet = null;
for (Node<E> trail = head, p = trail.next;
p != null;
trail = p, p = p.next) {
if (p == node) {
unlink(p, trail);
break;
}
}
} finally {
fullyUnlock();
}
}
}
转载自http://blog.youkuaiyun.com/mazhimazh/