一些深度学习网络精确率、大小的比较

本文对比了2016年前后的多种深度神经网络模型,包括它们的结构、大小及精度等关键参数。涵盖从早期的AlexNet到近期的Inception、ResNet等模型,并介绍了一些高效轻量级网络如SqueezeNet、MobileNets等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文An Analysis of Deep Neural Network Models for Practical Applications 比较了2016年前的一些神经网络的大小,精度等参数。如下图所示:

这里写图片描述

2016年以来有出现了一些新的神经网络结构,特地查阅了一些论文,总结了一下(发现有很多数据没法不全面或者不同版本的数据稍有差异,其中必定有很多纰漏之处,望多多指正,我会修改并补充的),如下:
这里写图片描述
其中包含~的数据是从An Analysis of Deep Neural Network Models for Practical Applications 文中图片得到的大概值。

参考文献
1. An Analysis of Deep Neural Network Models for Practical Applications
2. ImageNet Classification with Deep Convolutional Neural Networks
2. Very Deep Convolutional Networks for Large-Scale Image Recognition
3. Network In Network
4. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
5. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
6. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
7. Deep Residual Learning for Image Recognition
8. Identity Mappings in Deep Residual Networks
8. Highway Networks
9. FractalNet: Ultra-Deep Neural Networks without Residuals
10. Deep Networks with Stochastic Depth
11. Aggregated Residual Transformations for Deep Neural Networks
12. Wide Residual Networks
13. Densely Connected Convolutional Networks(CVPR2017 best paper)
14. Deep Pyramidal Residual Networks
15. Dual Path Networks
16. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
17. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
18. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值