题目:要求三个线程A、B、C按照顺序的输出A、B、C。
1. volatile关键字(保证内存可见性)
基于 volatile 关键字来实现线程间相互通信是使用共享内存的思想,大致意思就是多个线程同时监听一个变量,当这个变量发生变化的时候 ,线程能够感知并执行相应的业务。
package com.kuang.xianchengjiantongxin;
import java.util.concurrent.TimeUnit;
public class volatileTest {
static volatile int notice = 1;
public static void main(String[] args) {
new Thread(() -> {
while (notice != 1) {
}
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("A");
notice = 2;
}, "A").start();
new Thread(() -> {
while (notice != 2) {
}
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("B");
notice = 3;
}, "B").start();
new Thread(() -> {
while (notice != 3) {
}
System.out.println("C");
notice = 1;
}, "C").start();
}
}
2. 使用 ReentrantLock 结合 Condition
package com.kuang.xianchengjiantongxin;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class conditionTest2 {
// 为了能让线程内部能访问到num,将num设置为static
static int num = 1;
public static void main(String[] args) {
Lock lock = new ReentrantLock();
Condition condition1 = lock.newCondition();
Condition condition2 = lock.newCondition();
Condition condition3 = lock.newCondition();
new Thread(() -> {
lock.lock();
try {
TimeUnit.SECONDS.sleep(2);
while (num != 1) {
condition1.await();
}
System.out.println("A");
num = 2;
condition2.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}, "A").start();
new Thread(() -> {
lock.lock();
try {
TimeUnit.SECONDS.sleep(1);
while (num != 2) {
condition2.await();
}
System.out.println("B");
num = 3;
condition3.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}, "B").start();
new Thread(() -> {
lock.lock();
try {
while (num != 3) {
condition3.await();
}
System.out.println("C");
num = 1;
condition1.signal();
} catch (Exception e) {
e.printStackTrace();
} finally {
lock.unlock();
}
}, "C").start();
}
}
3. LockSupport实现线程间的阻塞和唤醒
LockSupport 是一种非常灵活的实现线程间阻塞和唤醒的工具,使用它不用关注是等待线程先进行还是唤醒线程先运行,但是得知道线程的名字。
public static void park(Object blocker); // 暂停当前线程
public static void parkNanos(Object blocker, long nanos); // 暂停当前线程,不过有超时时间的限制
public static void parkUntil(Object blocker, long deadline); // 暂停当前线程,直到某个时间
public static void park(); // 无期限暂停当前线程
public static void parkNanos(long nanos); // 暂停当前线程,不过有超时时间的限制
public static void parkUntil(long deadline); // 暂停当前线程,直到某个时间
public static void unpark(Thread thread); // 恢复当前线程
public static Object getBlocker(Thread t);
park,停车,让当前线程停下来。
unpark,不停车,让当前线程跑起来。
package com.kuang.xianchengjiantongxin;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.LockSupport;
/**
* @author liushihao <liushihao@kuaishou.com>
* Created on 2021/3/10 11:11 上午
*/
public class LockSupportTest {
public static void main(String[] args) throws InterruptedException {
Thread threadC = new Thread(() -> {
LockSupport.park();
System.out.println("C");
});
Thread threadB = new Thread(() -> {
LockSupport.park();
System.out.println("B");
LockSupport.unpark(threadC);
});
Thread threadA = new Thread(() -> {
System.out.println("A");
LockSupport.unpark(threadB);
});
threadC.start();
TimeUnit.SECONDS.sleep(2);
threadB.start();
TimeUnit.SECONDS.sleep(1);
threadA.start();
}
}
- Object.wait()、Object.notify()、Object.notifyAll方法,但是notify方法只能随机唤醒一个线程,并不能实现精确唤醒。
- CountDownLatch(减法计数器)同样不能实现精确唤醒。