STL Iterators

本文介绍了C++ Standard Template Library (STL)中的迭代器概念及其使用方法。迭代器为容器提供了一种通用的访问机制,可以遍历容器中的元素,并支持不同类型的容器。文章详细解释了如何创建和使用迭代器,包括前向、双向和随机访问迭代器的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The concept of an iterator is fundamental to understanding the C++ Standard Template Library (STL) because iterators provide a means for accessing data stored in container classes such a vector, map, list, etc. 



You can think of an iterator as pointing to an item that is part of a larger container of items. For instance, all containers support a function called begin(), which will return an iterator pointing to the beginning of the container (the first element) and function, end(), that returns an iterator corresponding to having reached the end of the container. In fact, you can access the element by " dereferencing" the iterator with a *, just as you would dereference a pointer. 

To request an iterator appropriate for a particular STL templated class, you use the syntax
std::class_name<template_parameters>::iterator name                  // eg: std::vector<int>::iterator it;
where  name is the name of the iterator variable you wish to create and the  class_name is the name of the STL container you are using, and the  template_parametersare the parameters to the template used to declare objects that will work with this iterator. Note that because the STL classes are part of the std  namespace, you will need to either prefix every container class type with "std::", as in the example, or include "using namespace std;" at the top of your program. 

For instance, if you had an STL vector storing integers, you could create an iterator for it as follows:
std::vector<int> myIntVector;
std::vector<int>::iterator myIntVectorIterator;
Different operations and containers support different types of iterator behavior. In fact, there are several different classes of iterators, each with slightly different properties. First, iterators are distinguished by whether you can use them for reading or writing data in the container. Some types of iterators allow for both reading and writing behavior, though not necessarily at the same time. 

Some of the most important are the forward, backward and the bidirectional iterators. Both of these iterators can be used as either input or output iterators, meaning you can use them for either writing or reading. The forward iterator only allows movement one way -- from the front of the container to the back. To move from one element to the next, the increment operator, ++, can be used. 

For instance, if you want to access the elements of an STL vector, it's best to use an iterator instead of the traditional C-style code. The strategy is fairly straightforward: call the container's begin function to get an iterator, use ++ to step through the objects in the container, access each object with the * operator ("*iterator") similar to the way you would access an object by dereferencing a pointer, and stop iterating when the iterator equals the container's end iterator. You can compare iterators using != to check for inequality, == to check for equality. (This only works when the iterators are operating on the same container!) 

The old approach (avoid)
using namespace std;

vector<int> myIntVector;
// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);

for(int y=0; y<myIntVector.size(); y++)
{
    cout<<myIntVector[y]<<" ";
    //Should output 1 4 8
}
The STL approach (use this)
using namespace std;

vector<int> myIntVector;
vector<int>::iterator myIntVectorIterator;

// Add some elements to myIntVector
myIntVector.push_back(1);
myIntVector.push_back(4);
myIntVector.push_back(8);

for(myIntVectorIterator = myIntVector.begin(); 
        myIntVectorIterator != myIntVector.end();
        myIntVectorIterator++)
{
    cout<<*myIntVectorIterator<<" ";
    //Should output 1 4 8
}
As you might imagine, you can use the decrement operator, --, when working with a bidirectional iterator or a backward operator. 

Iterators are often handy for specifying a particular range of things to operate on. For instance, the range  item.begin()item.end() is the entire container, but smaller slices can be used. This is particularly easy with one other, extremely general class of iterator, the random access iterator, which is functionally equivalent to a pointer in C or C++ in the sense that you can not only increment or decrement but also move an arbitrary distance in constant time (for instance, jump multiple elements down a vector). 

For instance, the iterators associated with vectors are random access iterators so you could use arithmetic of the form
iterator + n
where n is an integer. The result will be the element corresponding to the nth item after the item pointed to be the current iterator. This can be a problem if you happen to exceed the bounds of your iterator by stepping forward (or backward) by too many elements. 

The following code demonstrates both the use of random access iterators and exceeding the bounds of the array ( don't run it!):
vector<int> myIntVector;
vector<int>::iterator myIntVectorIterator;
myIntVectorIterator = myIntVector.begin() + 2;
You can also use the standard arithmetic shortcuts for addition and subtraction, += and -=, with random access iterators. Moreover, with random access iterators you can use <, >, <=, and >= to compare iterator positions within the container. 

Iterators are also useful for some functions that belong to container classes that require operating on a range of values. A simple but useful example is the erase() function. The vector template supports this function, which takes a range as specified by two iterators -- every element in the range is erased. For instance, to erase an entire vector:
vector<int>::iterator myIntVectorIterator;
myIntVector.erase(myIntVectorIterator.begin(), myIntVectorIterator.end());
which would delete all elements in the vector. If you only wanted to delete the first two elements, you could use
myIntVector.erase(myIntVectorIterator.begin(), myIntVectorIterator.begin()+2);
Note that various container class support different types of iterators -- the vector class, which has served as our model for iterators, supports a random access iterator, the most general kind. Another container, the list container (to be discussed later), only supports bidirectional iterators. 

So why use iterators? First, they're a flexible way to access the data in containers that don't have obvious means of accessing all of the data (for instance, maps [to be discussed later]). They're also quite flexible -- if you change the underlying container, it's easy to change the associated iterator so long as you only use features associated with the iterator supported by both classes. Finally, the STL algorithms defined in <algorithm> (to be discussed later) use iterators.
Summary
The Good
  • The STL provides iterators as a convenient abstraction for accessing many different types of containers.
  • Iterators for templated classes are generated inside the class scope with the syntax
    class_name<parameters>::iterator
  • Iterators can be thought of as limited pointers (or, in the case of random access iterators, as nearly equivalent to pointers)
The Gotchas
  • Iterators do not provide bounds checking; it is possible to overstep the bounds of a container, resulting in segmentation faults
  • Different containers support different iterators, so it is not always possible to change the underlying container type without making changes to your code
  • Iterators can be invalidated if the underlying container (the container being iterated over) is changed significantly
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 这个HTML文件是一个专门设计的网页,适合在告白或纪念日这样的特殊时刻送给女朋友,给她带来惊喜。它通过HTML技术,将普通文字转化为富有情感和创意的表达方式,让数字媒体也能传递深情。HTML(HyperText Markup Language)是构建网页的基础语言,通过标签描述网页结构和内容,让浏览器正确展示页面。在这个特效网页中,开发者可能使用了HTML5的新特性,比如音频、视频、Canvas画布或WebGL图形,来提升视觉效果和交互体验。 原本这个文件可能是基于ASP.NET技术构建的,其扩展名是“.aspx”。ASP.NET是微软开发的一个服务器端Web应用程序框架,支持多种编程语言(如C#或VB.NET)来编写动态网页。但为了在本地直接运行,不依赖服务器,开发者将其转换为纯静态的HTML格式,只需浏览器即可打开查看。 在使用这个HTML特效页时,建议使用Internet Explorer(IE)浏览器,因为一些老的或特定的网页特效可能只在IE上表现正常,尤其是那些依赖ActiveX控件或IE特有功能的页面。不过,由于IE逐渐被淘汰,现代网页可能不再对其进行优化,因此在其他现代浏览器上运行可能会出现问题。 压缩包内的文件“yangyisen0713-7561403-biaobai(html版本)_1598430618”是经过压缩的HTML文件,可能包含图片、CSS样式表和JavaScript脚本等资源。用户需要先解压,然后在浏览器中打开HTML文件,就能看到预设的告白或纪念日特效。 这个项目展示了HTML作为动态和互动内容载体的强大能力,也提醒我们,尽管技术在进步,但有时复古的方式(如使用IE浏览器)仍能唤起怀旧之情。在准备类似的个性化礼物时,掌握基本的HTML和网页制作技巧非常
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值