目标检测算法论文大杂烩
[overfeat](http://arxiv.org/abs/1312.6229)
[RCNN](http://arxiv.org/abs/1311.2524)
[SPP-Net](http://arxiv.org/pdf/1406.4729.pdf)
[Fast-RCNN](http://arxiv.org/abs/1504.08083)
[R-FCN](https://arxiv.org/abs/1605.06409)
[Faster-RCNN](http://arxiv.org/abs/1506.01497)
[YOLO](http://arxiv.org/abs/1506.02640)
[YOLO2](https://arxiv.org/pdf/1612.08242v1.pdf)
[SSD](http://arxiv.org/pdf/1512.02325v1.pdf)
[HyperNet](https://www.arxiv.org/abs/1604.00600)
[MR-CNN](http://arxiv.org/abs/1505.01749)
[Inside-Outside Net](http://120.52.73.9/www.cvfoundation.org/)
[LocNet](https://arxiv.org/abs/1511.07763)
[G-CNN](https://arxiv.org/abs/1512.07729)
[MASK-RCNN](http://arxiv.org/abs/1605.02319)
目标检测算法性能大比拼
目标检测算法实际应用中的场景,无外乎关心MAP和检测耗时两个指标,针对上述一系列的算法,下表给出其对应的结果,其中+++表示训练数据为VOC07+VOC12+MS COCO。其余方法的训练数据均为VOC07 for VOC07 test,VOC07+VOC12 for VOC12test,MS COCO for MS COCO test.
接下来详细比较Faster R-CNN、R-FCN和SSD的各个性能指标:

目标检测算法源码大集合
[overfeat](https://github.com/sermanet/OverFeat)
[RCNN](https://github.com/rbgirshick/rcnn)
[SPP-Net](https://github.com/dsisds/caffe-SPPNet)
[Fast-RCNN](https://github.com/rbgirshick/fast-rcnn)
[R-FCN](https://github.com/daijifeng001/R-FCN)
[Faster-RCNN](https://github.com/rbgirshick/py-faster-rcnn)
[YOLO](https://github.com/nilboy/tensorflow-yolo)
[YOLO2](https://github.com/pjreddie/darknet)
[SSD](https://github.com/weiliu89/caffe/tree/ssd)
[MASK-RCNN](静待佳音...)
目标检测算法结果大集锦