Spark的Shuffle机制

本文详细阐述了MapReduce框架中的Shuffle机制,包括其在连接Map和Reduce阶段的作用、工作原理以及如何影响程序性能。文章还对比了Hadoop和Spark中的Shuffle实现,介绍了它们各自的特点和效率考量。

MapReduce中的Shuffle机制

  在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。
  Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。
  下图描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间:

  在Hadoop, 在mapper端每次当memory buffer中的数据快满的时候, 先将memory中的数据, 按partition进行划分, 然后各自存成小文件, 这样当buffer不断的spill的时候, 就会产生大量的小文件。
  所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge, 基于文件的多路并归排序,在map端的将相同partition的merge到一起, 在reduce端, 把从mapper端copy来的数据文件进行merge, 以用于最终的reduce
多路归并排序, 达到两个目的:merge, 把相同key的value都放到一个arraylist里面;sort, 最终的结果是按key排序的。
  这个方案扩展性很好, 面对大数据也没有问题, 当然问题在效率, 毕竟需要多次进行基于文件的多路归并排序,多轮的和磁盘进行数据读写。

Spark的Shuffle机制

  Spark中的Shuffle是把一组无规则的数据尽量转换成一组具有一定规则的数据。
Spark计算模型是在分布式的环境下计算的,这就不可能在单进程空间中容纳所有的计算数据来进行计算。所以,数据就按照Key进行分区,分配成一块一块的小分区,打散分布在集群的各个进程的内存空间中,并不是所有计算算子都满足于按照一种方式分区进行计算。
  当需要对数据进行排序存储时,就有了重新按照一定的规则对数据重新分区的必要,Shuffle就是包裹在各种需要重分区的算子之下的一个对数据进行重新组合的过程。在逻辑上还可以这样理解:由于重新分区需要知道分区规则,而分区规则按照数据的Key通过映射函数(Hash或者Range等)进行划分由数据确定出Key的过程就是Map过程,同时Map过程也可以做数据处理,例如,在Join算法中有一个很经典的算法叫Map Side Join,就是确定数据该放到哪个分区的逻辑定义阶段。Shuffle将数据进行收集分配到指定Reduce分区,Reduce阶段根据函数对相应的分区做Reduce所需的函数处理
 

  1. 首先每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是M×R,其中M是Map的个数,R是Reduce的个数。
  2. 其次Mapper产生的结果会根据设置的partition算法填充到每个bucket中去。这里的partition算法是可以自定义的,当然默认的算法是根据key哈希到不同的bucket中去。
  3. 当Reducer启动时,它会根据自己task的id和所依赖的Mapper的id从远端或是本地的block manager中取得相应的bucket作为Reducer的输入进行处理。

      这里的bucket是一个抽象概念,在实现中每个bucket可以对应一个文件,可以对应文件的一部分或是其他等。

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值