nyoj 130 相同的雪花 【哈希】

本文介绍了一种高效判断雪花是否相同的算法。通过使用散列表技术,避免了传统方法中的O(n^2)时间复杂度问题,确保即使在大量数据的情况下也能快速准确地找到相同的雪花图案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相同的雪花

时间限制:1000 ms  |  内存限制:65535 KB
难度:4
描述
You may have heard that no two snowflakes are alike. Your task is to write a program to determine whether this is really true. Your program will read information about a collection of snowflakes, and search for a pair that may be identical. Each snowflake has six arms. For each snowflake, your program will be provided with a measurement of the length of each of the six arms. Any pair of snowflakes which have the same lengths of corresponding arms should be flagged by your program as possibly identical.
输入
The first line of the input will contain a single interger T(0<T<10),the number of the test cases.
The first line of every test case will contain a single integer n, 0 < n ≤ 100000, the number of snowflakes to follow. This will be followed by n lines, each describing a snowflake. Each snowflake will be described by a line containing six integers (each integer is at least 0 and less than 10000000), the lengths of the arms of the snow ake. The lengths of the arms will be given in order around the snowflake (either clockwise or counterclockwise), but they may begin with any of the six arms. For example, the same snowflake could be described as 1 2 3 4 5 6 or 4 3 2 1 6 5.
输出
For each test case,if all of the snowflakes are distinct, your program should print the message:
No two snowflakes are alike.
If there is a pair of possibly identical snow akes, your program should print the message:
Twin snowflakes found.
样例输入
1
2
1 2 3 4 5 6
4 3 2 1 6 5
样例输出
Twin snowflakes found.

题意:雪花有六个角,分别赋给他们长度,按照顺时针输入,问你在输入的雪花中有没有完全一样的.

分析:按照传统的做法时间是O(n^2),因为数据很大所以说会超时,要换一种方法,要用到散列表(大神们讲的很详细,我就现丑了)。

这道题的比较也蛮奇特的。

代码1(链表形式):

#include <cstdio>
#include <cstring>
#define M 20005
using namespace std;
struct node
{
	int a[6];
	struct node *next;
	/* data */
};
node *s[M];

int match(int *temp, int sum){
	int i, j;
	node *p; p = s[sum]->next;
	while(p){
		for(i = 0; i < 6; ++ i){
			for(j = 0; j < 6; ++ j){
				if(temp[j] != p->a[(i+j)%6]) break;
			}
			if(j == 6) return true;
			for(j = 0; j < 6; ++ j){
				if(temp[j] != p->a[(i+6-j)%6]) break;
			}
			if(j == 6) return true;
		}
		p = p->next;
	}
	p = new node;
	for(i = 0; i < 6; ++ i) p->a[i] = temp[i];
	p->next = s[sum]->next;
	s[sum]->next = p;
	return false;
}
int main(){
	int t, n, i, j, temp[6];
	scanf("%d", &t);
	while(t --){
		int sum,flag = 0;
		scanf("%d", &n);
		for(i = 0; i < M; ++ i){
			s[i] = new node; s[i]->next = NULL;
		}
		while(n --){
			sum = 0;
			for(i = 0; i < 6; ++i){
				scanf("%d", &temp[i]);
				sum += temp[i];
			}
			sum %= M;
			if(!flag){
				if(match(temp, sum)) flag = 1;
			}
		}
		if(flag) puts("Twin snowflakes found.");
		else puts("No two snowflakes are alike.");
	}
	return 0;
}        
代码2(三维数组):

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define M 20000
int s[M][100][6];
int len[M];

int match(int *a, int *b){
	int i, j, k;
	for(i = 0; i < 6; i ++){
		for(j = 0; j < 6; j ++){
			if(a[j] != b[(i+j)%6]) break;
		}
		if(j == 6) return true;
		for(j = 0; j < 6; j ++){
			if(a[j] != b[(i+6-j)%6]) break;
		}
		if(j == 6) return true;
	}
	return false;
}
int main(){
	int t, n, sum, temp[6];
	scanf("%d", &t);
	while(t --){
		int i, j, k, flag = 0;
		scanf("%d", &n);
		memset(len, 0, sizeof(int)*(M+1));
		while(n --){
			sum = 0;
			for(i = 0; i < 6; i ++){
				scanf("%d",&temp[i]);
				sum += temp[i];
			}
			sum %= M;
			for (i = 0; i < 6; ++i){
				s[sum][len[sum]][i] = temp[i];
			}
			++len[sum];
		}
		for(i = 0; i < M; i ++){
			if(len[i] >1)
			for(j = 0; j < len[i]-1; j ++){
				for(k = j+1; k < len[i]; k ++){
					if(match(s[i][j], s[i][k])){
						flag = 1; 
						 break;
					}
				}
				if(flag) break;
			}
			if(flag) break;
		}
		if(flag) puts("Twin snowflakes found.");
		else puts("No two snowflakes are alike.");
	}
	return 0;
}
        



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值