树状数组

树状数组入门

树状数组 重点是在树状的数组

大家都知道二叉树吧

叶子结点代表A数组A[1]~A[8]

img

现在变形一下

img

现在定义每一列的顶端结点C[]数组

如下图

img

C[i]代表 子树的叶子结点的权值之和// 这里以求和举例

如图可以知道

C[1]=A[1];

C[2]=A[1]+A[2];

C[3]=A[3];

C[4]=A[1]+A[2]+A[3]+A[4];

C[5]=A[5];

C[6]=A[5]+A[6];

C[7]=A[7];

C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

下面观察如下图

img

将C[]数组的结点序号转化为二进制

1=(001) C[1]=A[1];

2=(010) C[2]=A[1]+A[2];

3=(011) C[3]=A[3];

4=(100) C[4]=A[1]+A[2]+A[3]+A[4];

5=(101) C[5]=A[5];

6=(110) C[6]=A[5]+A[6];

7=(111) C[7]=A[7];

8=(1000) C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

对照式子可以发现 C[i]=A[i-2k+1]+A[i-2k+2]+…A[i]; (k为i的二进制中从最低位到高位连续零的长度)例如i=8时,k=3;

可以自行带入验证;

现在引入lowbit(x)

lowbit(x) 其实就是取出x的最低位1 换言之 lowbit(x)=2^k k的含义与上面相同 理解一下

下面说代码

  1. int lowbit(int t)
  2. {
  3. return t&(-t);
  4. }
  5. //-t 代表t的负数 计算机中负数使用对应的正数的补码来表示
  6. //例如 :
  7. // t=6(0110) 此时 k=1
  8. //-t=-6=(1001+1)=(1010)
  9. // t&(-t)=(0010)=2=2^1

C[i]=A[i-2k+1]+A[i-2k+2]+…A[i];

C[i]= A[i-lowbit(i)+1]+A[i-lowbit(i)+2]+…A[i];

*************************************************分割线

区间查询

ok 下面利用C[i]数组,求A数组中前i项的和

举个例子 i=7;

sum[7]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7] ; 前i项和

C[4]=A[1]+A[2]+A[3]+A[4]; C[6]=A[5]+A[6]; C[7]=A[7];

可以推出: sum[7]=C[4]+C[6]+C[7];

序号写为二进制: sum[(111)]=C[(100)]+C[(110)]+C[(111)];

再举个例子 i=5

sum[5]=A[1]+A[2]+A[3]+A[4]+A[5] ; 前i项和

C[4]=A[1]+A[2]+A[3]+A[4]; C[5]=A[5];

可以推出: sum[5]=C[4]+C[5];

序号写为二进制: sum[(101)]=C[(100)]+C[(101)];

细细观察二进制 树状数组追其根本就是二进制的应用

结合代码

  1. int getsum(int x)
  2. {
  3. int ans=0;
  4. for(int i=x;i>0;i-=lowbit(i))
  5. ans+=c[i];
  6. return ans;
  7. }

对于i=7 进行演示

​ 7(111) ans+=C[7]

lowbit(7)=001 7-lowbit(7)=6(110) ans+=C[6]

lowbit(6)=010 6-lowbit(6)=4(100) ans+=C[4]

lowbit(4)=100 4-lowbit(4)=0(000)

对于i=5 进行演示

​ 5(101) ans+=C[5]

lowbit(5)=001 5-lowbit(5)=4(100) ans+=C[4]

lowbit(4)=100 4-lowbit(4)=0(000)

*************************************************分割线

单点更新

当我们修改A[]数组中的某一个值时 应当如何更新C[]数组呢?

回想一下 区间查询的过程,再看一下上文中列出的图

结合代码分析

  1. void add(int x,int y)
  2. {
  3. for(int i=x;i<=n;i+=lowbit(i))
  4. c[i]+=y;
  5. }
  6. //可以发现 更新过程是查询过程的逆过程
  7. //由叶子结点向上更新C[]数组

img

如图:

当更新A[1]时 需要向上更新C[1] ,C[2],C[4],C[8]

​ C[1], C[2], C[4], C[8]

写为二进制 C[(001)],C[(010)],C[(100)],C[(1000)]

​ 1(001) C[1]+=A[1]

lowbit(1)=001 1+lowbit(1)=2(010) C[2]+=A[1]

lowbit(2)=010 2+lowbit(2)=4(100) C[4] +=A[1]

(1000)]

​ 1(001) C[1]+=A[1]

lowbit(1)=001 1+lowbit(1)=2(010) C[2]+=A[1]

lowbit(2)=010 2+lowbit(2)=4(100) C[4] +=A[1]

lowbit(4)=100 4+lowbit(4)=8(1000) C[8] +=A[1]

内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值