BP神经网络模型与学习算法

本文介绍了BP神经网络的基本概念,包括其工作原理、拓扑结构及激活函数的选择,并详细阐述了有监督学习环境下BP模型的训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,什么是BP

"BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。"

我们现在来分析下这些话:

  • “是一种按误差逆传播算法训练的多层前馈网络”

BP是后向传播的英文缩写,那么传播对象是什么?传播的目的是什么?传播的方式是后向,可这又是什么意思呢。

传播的对象是误差,传播的目的是得到所有层的估计误差,后向是说由后层误差推导前层误差:

即BP的思想可以总结为

利用输出后的误差来估计输出层的直接前导层的误差,再用这个误差估计更前一层的误差,如此一层一层的反传下去,就获得了所有其他各层的误差估计。 
  • “BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)”

我们来看一个最简单的三层BP:

  • “BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。”

BP利用一种称为激活函数来描述层与层输出之间的关系,从而模拟各层神经元之间的交互反应。

激活函数必须满足处处可导的条件。那么比较常用的是一种称为S型函数的激活函数:

那么上面的函数为什么称为是S型函数呢:

我们来看它的形态和它导数的形态:

p.s. S型函数的导数:

神经网络的学习目的:

希望能够学习到一个模型,能够对输入输出一个我们期望的输出。
 
学习的方式:
在外界输入样本的刺激下不断改变网络的连接权值
 
学习的本质:
对各连接权值的动态调整

学习的核心:

权值调整规则,即在学习过程中网络中各神经元的连接权变化所依据的一定的调整规则。

二,有监督的BP模型训练过程

1. 思想

有监督的BP模型训练表示我们有一个训练集,它包括了: input X 和它被期望拥有的输出 output Y

所以对于当前的一个BP模型,我们能够获得它针对于训练集的误差

所以BP的核心思想就是:将输出误差以某种形式通过隐层向输入层逐层反传,这里的某种形式其实就是:

也就是一种 "信号的正向传播 ----> 误差的反向传播"的过程:

2.具体

这里解释下根据误差对权值的偏导数来修订权值:

《MATLAB神经网络43个案例分析》是在《MATLAB神经网络30个案例分析》的基础上出版的,部分章节涉及了常见的优化算法(遗传算法、粒子群算法等)神经网络的结合问题。 《MATLAB神经网络43个案例分析》可作为高等学校相关专业学生本科毕业设计、研究生课题研究的参考书籍,亦可供相关专业教师教学参考。 《MATLAB神经网络43个案例分析》共有43章目录如下: 第1章 BP神经网络的数据分类——语音特征信号分类 第2章 BP神经网络的非线性系统建模——非线性函数拟合 第3章 遗传算法优化BP神经网络——非线性函数拟合 第4章 神经网络遗传算法函数极值寻优——非线性函数极值寻优 第5章 基于BP_Adaboost的强分类器设计——公司财务预警建模 第6章 PID神经元网络解耦控制算法——多变量系统控制 第7章 RBF网络的回归--非线性函数回归的实现 第8章 GRNN网络的预测----基于广义回归神经网络的货运量预测 第9章 离散Hopfield神经网络的联想记忆——数字识别 第10章 离散Hopfield神经网络的分类——高校科研能力评价 第11章 连续Hopfield神经网络的优化——旅行商问题优化计算 第12章 初始SVM分类回归 第13章 LIBSVM参数实例详解 第14章 基于SVM的数据分类预测——意大利葡萄酒种类识别 第15章 SVM的参数优化——如何更好的提升分类器的性能 第16章 基于SVM的回归预测分析——上证指数开盘指数预测. 第17章 基于SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势变化空间预测 第18章 基于SVM的图像分割-真彩色图像分割 第19章 基于SVM的手写字体识别 第20章 LIBSVM-FarutoUltimate工具箱及GUI版本介绍使用 第21章 自组织竞争网络在模式分类中的应用—患者癌症发病预测 第22章 SOM神经网络的数据分类--柴油机故障诊断 第23章 Elman神经网络的数据预测----电力负荷预测模型研究 第24章 概率神经网络的分类预测--基于PNN的变压器故障诊断 第25章 基于MIV的神经网络变量筛选----基于BP神经网络的变量筛选 第26章 LVQ神经网络的分类——乳腺肿瘤诊断 第27章 LVQ神经网络的预测——人脸朝向识别 第28章 决策树分类器的应用研究——乳腺癌诊断 第29章 极限学习机在回归拟合及分类问题中的应用研究——对比实验 第30章 基于随机森林思想的组合分类器设计——乳腺癌诊断 第31章 思维进化算法优化BP神经网络——非线性函数拟合 第32章 小波神经网络的时间序列预测——短时交通流量预测 第33章 模糊神经网络的预测算法——嘉陵江水质评价 第34章 广义神经网络的聚类算法——网络入侵聚类 第35章 粒子群优化算法的寻优算法——非线性函数极值寻优 第36章 遗传算法优化计算——建模自变量降维 第37章 基于灰色神经网络的预测算法研究——订单需求预测 第38章 基于Kohonen网络的聚类算法——网络入侵聚类 第39章 神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类 第40章 动态神经网络时间序列预测研究——基于MATLAB的NARX实现 第41章 定制神经网络的实现——神经网络的个性化建模仿真 第42章 并行运算神经网络——基于CPU/GPU的并行神经网络运算 第43章 神经网络高效编程技巧——基于MATLAB R2012b新版本特性的探讨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值