Keras框架下的独热编码与解码,让你的数据大变身

博客主要围绕二维矩阵的处理展开,展示了二维矩阵编码后的形式,呈现出特定的多维数组结构,随后又展示了解码后矩阵恢复到原始的二维形式,体现了二维矩阵编码和解码的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里针对的是处理二维矩阵:

# -*- coding: utf-8 -*-
import numpy as np
from keras.utils import to_categorical


def _OneHot_encode():
    data = np.array([[0, 1, 2],
                     [3, 4, 5],
                     [7, 8, 9],
                     [10, 11, 12]])
    print(data)
    print(data.shape)
    encoded_data = to_categorical(data)
    print(encoded_data.shape)
    print(encoded_data)
    return encoded_data


def _OneHot_decode():
    encoded_data = _OneHot_encode()
    decoded_data = []
    for i in range(encoded_data.shape[0]):
        decoded = np.argmax(encoded_data[i], axis=1)
        decoded_data.append(decoded)
    decoded_data = np.array(decoded_data)
    print(decoded_data.shape)
    return decoded_data


if __name__ == '__main__':
    decoded_data = _OneHot_decode()
    print(decoded_data)

这里编码完是这样的:

[[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

 [[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]]

 [[0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.]]

 [[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.]
  [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]]

然后解码完又回去了:

[[ 0  1  2]
 [ 3  4  5]
 [ 7  8  9]
 [10 11 12]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值