hdu——2602Bone Collector(第一类背包问题)

探讨了骨收集者在有限容量的包中收集不同价值和体积的骨头时,如何最大化总价值的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bone Collector

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 46744    Accepted Submission(s): 19463


Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …
The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?

 

Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
 

Output
One integer per line representing the maximum of the total value (this number will be less than 2 31).
 

Sample Input
  
1 5 10 1 2 3 4 5 5 4 3 2 1
 

Sample Output
  
14
 

Author
Teddy
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   1203  2159  1171  2191  2844 

 

第一类背包  for(i=1;i<=n;i++)

for(j=V;j>v[i];j--)

d[j]=max(d[j],d[j-v[i]]+jg[i])

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<queue>
#include<set>
#include<map>
#include<sstream>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<deque>
using namespace std;
struct bb
{
	long long v;
	long long jz;
}a[1005];
long long max(long long n,long long m)
{
	if(n>=m)return n;
	else return m;
}
int main()
{
	long long n,m,vv,sum[1005];
	cin>>n;
	while(n--)
	{	
		cin>>m>>vv;
		memset(sum, 0, sizeof(sum));
		for(int i=0;i<m;i++)
		{
			cin>>a[i].jz;
		}
		for(int i=0;i<m;i++)
		{
			cin>>a[i].v;
		}
		for(int i=0;i<m;i++)
		{
			for(int j=vv;j>=a[i].v;j--)
			{
				sum[j]=max(sum[j],sum[j-a[i].v]+a[i].jz);	
			}
		}
		cout<<sum[vv]<<endl;//注意是vv而不是其他
	}	
	return 0;
}

### HDU OJ Problem 2566 Coin Counting Solution Using Simple Enumeration and Generating Function Algorithm #### 使用简单枚举求解硬币计数问题 对于简单的枚举方法,可以通过遍历所有可能的组合方式来计算给定面额下的不同硬币组合数量。这种方法虽然直观但效率较低,在处理较大数值时性能不佳。 ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int[] coins = {1, 2, 5}; // 定义可用的硬币种类 while (scanner.hasNext()) { int targetAmount = scanner.nextInt(); int countWays = findNumberOfCombinations(targetAmount, coins); System.out.println(countWays); } } private static int findNumberOfCombinations(int amount, int[] denominations) { if (amount == 0) return 1; if (amount < 0 || denominations.length == 0) return 0; // 不使用当前面值的情况 int excludeCurrentDenomination = findNumberOfCombinations(amount, subArray(denominations)); // 使用当前面值的情况 int includeCurrentDenomination = findNumberOfCombinations(amount - denominations[0], denominations); return excludeCurrentDenomination + includeCurrentDenomination; } private static int[] subArray(int[] array) { if (array.length <= 1) return new int[]{}; return java.util.Arrays.copyOfRange(array, 1, array.length); } } ``` 此代码实现了通过递归来穷尽每一种可能性并累加结果的方式找到满足条件的不同组合数目[^2]。 #### 利用母函数解决硬币计数问题 根据定义,可以将离散序列中的每一个元素映射到幂级数的一个项上,并利用这些多项式的乘积表示不同的组合情况。具体来说: 设 \( f(x)=\sum_{i=0}^{+\infty}{a_i*x^i}\),其中\( a_i \)代表当总金额为 i 时能够组成的方案总数,则有如下表达式: \[f_1(x)=(1+x+x^2+...)\] 这实际上是一个几何级数,其封闭形式可写作: \[f_1(x)=\frac{1}{(1-x)}\] 同理,对于其他类型的硬币也存在类似的生成函数。因此整个系统的生成函数就是各个单独部分之积: \[F(x)=f_1(x)*f_2(x)...*f_n(x)\] 最终目标是从 F(x) 中提取系数即得到所需的结果。下面给出基于上述理论的具体实现: ```cpp #include<iostream> using namespace std; const int MAXN = 1e4 + 5; int dp[MAXN]; void solve() { memset(dp, 0, sizeof(dp)); dp[0] = 1; // 初始化基础状态 int values[] = {1, 2, 5}, size = 3; for (int j = 0; j < size; ++j){ for (int k = values[j]; k <= 10000; ++k){ dp[k] += dp[k-values[j]]; } } } int main(){ solve(); int T; cin >> T; while(T--){ int n; cin>>n; cout<<dp[n]<<endl; } return 0; } ``` 这段 C++ 程序展示了如何应用动态规划技巧以及生成函数的概念高效地解决问题实例[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值