Hyperlink Analysis for the Web

信息检索旨在从文档集合中找出与用户查询相关的文档。在网络出现前,检索算法主要基于文档中的词汇分析。网络改变了这一状况,如今搜索引擎的检索算法不仅考虑文档词汇,还利用网页超链接结构等信息。超链接分析能显著提升搜索结果的相关性,本文探讨其在排序算法中的应用。
        Information retrieval is a computer science subfield whose goal is to find all documents relevant to a user query in a given collection of documents. As such, information retrieval should really be called document retrieval. Before the advent of the Web, IR systems were typically installed in libraries for use mostly by reference librarians. The retrieval algorithm for these systems was usually based exclusively on analysis of the words in the document.
        The Web changed all this. Now each Web user has access to various search engines whose retrieval algorithms often use not only the words in the documents but also information like the hyperlink structure of the Web or markup language tags.
        How are hyperlinks useful? The hyperlink functionality alone—that is, the hyperlink to Web page B that is contained in Web page A—is not directly useful in information retrieval. However, the way Web page authors use hyperlinks can give them valuable information content. Authors usually create hyperlinks they think will be useful to readers. Some may be navigational aids that, for example, take the reader back to the site’s home page; others provide access to documents that augment the content of the current page. The latter tend to point to highquality pages that might be on the same topic as the page containing the hyperlink. Web information retrieval systems can exploit this information to refine searches for relevant documents.
        Hyperlink analysis significantly improves the relevance of the search results, so much so that all major Web search engines claim to use some type of hyperlink analysis. However, the search engines do not disclose details about the type of hyperlink analysis they perform—mostly to avoid manipulation of search results by Web-positioning companies.
       In this article, I discuss how hyperlink analysis can be applied to ranking algorithms, and survey other ways Web search engines can use this analysis.

这篇文章来自于Monika R. Henzinger的文章《Hyperlink Analysis for the Web》,上面只是概述,有兴趣的朋友自己用GOOGLE搜索一下呵

“ [{ "resource": "/home/wrd/WYH/Brain/projects/scripts/brain_analysis.py", "owner": "Pylance5", "code": { "value": "reportMissingImports", "target": { "$mid": 1, "path": "/microsoft/pylance-release/blob/main/docs/diagnostics/reportMissingImports.md", "scheme": "https", "authority": "github.com" } }, "severity": 4, "message": "无法解析导入“braian”", "source": "Pylance", "startLineNumber": 5, "startColumn": 8, "endLineNumber": 5, "endColumn": 14, "origin": "extHost1" },{ "resource": "/home/wrd/WYH/Brain/projects/scripts/brain_analysis.py", "owner": "Pylance5", "code": { "value": "reportMissingImports", "target": { "$mid": 1, "path": "/microsoft/pylance-release/blob/main/docs/diagnostics/reportMissingImports.md", "scheme": "https", "authority": "github.com" } }, "severity": 4, "message": "无法解析导入“braian.config”", "source": "Pylance", "startLineNumber": 6, "startColumn": 8, "endLineNumber": 6, "endColumn": 21, "origin": "extHost1" },{ "resource": "/home/wrd/WYH/Brain/projects/scripts/brain_analysis.py", "owner": "Pylance5", "code": { "value": "reportMissingImports", "target": { "$mid": 1, "path": "/microsoft/pylance-release/blob/main/docs/diagnostics/reportMissingImports.md", "scheme": "https", "authority": "github.com" } }, "severity": 4, "message": "无法解析导入“braian.plot”", "source": "Pylance", "startLineNumber": 7, "startColumn": 8, "endLineNumber": 7, "endColumn": 19, "origin": "extHost1" },{ "resource": "/home/wrd/WYH/Brain/projects/scripts/brain_analysis.py", "owner": "Pylance5", "code": { "value": "reportMissingImports", "target": { "$mid": 1, "path": "/microsoft/pylance-release/blob/main/docs/diagnostics/reportMissingImports.md", "scheme": "https", "authority": "github.com" } }, "severity": 4, "message": "无法解析导入“braian.stats”", "source": "Pylance", "startLineNumber": 8, "startColumn": 8, "endLineNumber": 8, "endColumn": 20, "origin": "extHost1" }] ”的同时,我的: " wrd@wrd-ThinkPad-X240:~$ pip list Package Version ----------------------------- -------------------- actionlib 1.14.3 angles 1.9.14 anyio 4.5.2 apturl 0.5.2 argon2-cffi 25.1.0 argon2-cffi-bindings 21.2.0 arrow 1.4.0 asttokens 3.0.1 async-lru 2.0.4 attrs 25.3.0 autobahn 17.10.1 Automat 0.8.0 babel 2.17.0 backcall 0.2.0 backports.zoneinfo 0.2.1 bcrypt 3.1.7 beautifulsoup4 4.14.3 bleach 6.1.0 blinker 1.4 bondpy 1.8.7 breezy 3.0.2 Brian2 2.5.1 Brlapi 0.7.0 camera-calibration 1.17.0 camera-calibration-parsers 1.12.1 catkin 0.8.12 catkin-pkg 1.0.0 catkin-pkg-modules 1.0.0 cbor 1.0.0 certifi 2019.11.28 cffi 1.17.1 chardet 3.0.4 charset-normalizer 3.4.4 Click 7.0 colorama 0.4.3 comm 0.2.3 command-not-found 0.3 configobj 5.0.6 constantly 15.1.0 controller-manager 0.20.0 controller-manager-msgs 0.20.0 cryptography 2.8 cupshelpers 1.0 cv-bridge 1.16.2 cycler 0.10.0 Cython 0.29.14 czifile 2019.7.2.1 dbus-python 1.2.16 debugpy 1.8.17 decorator 5.2.1 defer 1.0.6 defusedxml 0.6.0 Deprecated 1.2.7 diagnostic-analysis 1.12.1 diagnostic-common-diagnostics 1.12.1 diagnostic-updater 1.12.1 distro 1.4.0 distro-info 0.23+ubuntu1.1 docutils 0.16 dulwich 0.19.15 duplicity 0.8.12.0 dynamic-reconfigure 1.7.6 empy 3.3.2 entrypoints 0.3 exceptiongroup 1.3.1 executing 2.2.1 fasteners 0.14.1 fastimport 0.9.8 fastjsonschema 2.21.2 fqdn 1.5.1 future 0.18.2 gazebo_plugins 2.9.3 gazebo_ros 2.9.3 gencpp 0.7.2 geneus 3.0.0 genlisp 0.4.18 genmsg 0.6.1 gennodejs 2.0.2 genpy 0.6.18 gevent 24.2.1 gpg 1.13.1 greenlet 3.1.1 h11 0.16.0 httpcore 1.0.9 httplib2 0.14.0 httpx 0.28.1 hyperlink 19.0.0 idna 2.8 image-geometry 1.16.2 imagecodecs 2023.3.16 imageio 2.35.1 importlib_metadata 8.5.0 importlib_resources 6.4.5 incremental 16.10.1 interactive-markers 1.12.2 ipykernel 6.29.5 ipython 8.12.3 ipywidgets 8.1.8 isoduration 20.11.0 jedi 0.19.2 Jinja2 3.1.6 joint-state-publisher 1.15.2 joint-state-publisher-gui 1.15.2 json5 0.12.1 jsonpointer 3.0.0 jsonschema 4.23.0 jsonschema-specifications 2023.12.1 jupyter 1.1.1 jupyter_client 8.6.3 jupyter-console 6.6.3 jupyter_core 5.8.1 jupyter-events 0.10.0 jupyter-lsp 2.3.0 jupyter_server 2.14.2 jupyter_server_terminals 0.5.3 jupyterlab 4.3.8 jupyterlab_pygments 0.3.0 jupyterlab_server 2.28.0 jupyterlab_widgets 3.0.16 keyring 18.0.1 kiwisolver 1.0.1 language-selector 0.1 laser-geometry 1.6.8 launchpadlib 1.10.13 lazr.restfulclient 0.14.2 lazr.uri 1.0.3 lazy_loader 0.4 lockfile 0.12.2 louis 3.12.0 lz4 3.0.2+dfsg macaroonbakery 1.3.1 Mako 1.1.0 MarkupSafe 2.1.5 matplotlib 3.1.2 matplotlib-inline 0.1.7 message-filters 1.17.4 mistune 3.1.4 monotonic 1.5 mpi4py 3.0.3 mpmath 1.3.0 narwhals 1.42.1 nbclient 0.10.1 nbconvert 7.16.6 nbformat 5.10.4 nest-asyncio 1.6.0 netifaces 0.10.4 networkx 3.1 nose 1.3.7 notebook 7.3.3 notebook_shim 0.2.4 numpy 1.24.4 oauthlib 3.1.0 olefile 0.46 opencv-python 4.12.0.88 overrides 7.7.0 packaging 25.0 paho-mqtt 2.1.0 pandas 2.0.3 pandocfilters 1.5.1 paramiko 2.6.0 parso 0.8.5 pexpect 4.6.0 pickleshare 0.7.5 pillow 10.4.0 pip 25.0.1 pkgutil_resolve_name 1.3.10 platformdirs 4.3.6 plotly 6.5.0 prometheus_client 0.21.1 prompt_toolkit 3.0.52 protobuf 3.6.1 psutil 5.5.1 ptyprocess 0.7.0 pure_eval 0.2.3 py-ubjson 0.14.0 pyasn1 0.4.2 pyasn1-modules 0.2.1 pycairo 1.16.2 pycparser 2.23 pycryptodomex 3.6.1 pycups 1.9.73 pydot 1.4.1 PyGithub 1.43.7 Pygments 2.19.2 PyGObject 3.36.0 PyHamcrest 1.9.0 PyJWT 1.7.1 pymacaroons 0.13.0 PyNaCl 1.3.0 PyOpenGL 3.1.0 pyOpenSSL 19.0.0 pyparsing 2.4.6 pypng 0.0.20 PyQRCode 1.2.1 PyQt5 5.14.1 pyRFC3339 1.1 python-apt 2.0.1+ubuntu0.20.4.1 python-dateutil 2.9.0.post0 python-debian 0.1.36+ubuntu1.1 python-gitlab 2.0.1 python-gnupg 0.4.5 python-json-logger 4.0.0 python-qt-binding 0.4.6 python-snappy 0.5.3 PyTrie 0.2 pytz 2025.2 PyWavelets 1.4.1 pyxdg 0.26 PyYAML 5.3.1 pyzmq 27.1.0 qt-dotgraph 0.4.5 qt-gui 0.4.5 qt-gui-cpp 0.4.5 qt-gui-py-common 0.4.5 referencing 0.35.1 reportlab 3.5.34 requests 2.32.4 requests-unixsocket 0.2.0 resource-retriever 1.12.10 rfc3339-validator 0.1.4 rfc3986-validator 0.1.1 roman 2.0.0 rosbag 1.17.4 rosboost-cfg 1.15.10 rosclean 1.15.10 roscreate 1.15.10 rosdep-modules 0.25.1 rosdistro 1.0.1 rosdistro-modules 1.0.1 rosgraph 1.17.4 rosinstall 0.7.8 rosinstall-generator 0.1.23 roslaunch 1.17.4 roslib 1.15.10 roslint 0.12.0 roslz4 1.17.4 rosmake 1.15.10 rosmaster 1.17.4 rosmsg 1.17.4 rosnode 1.17.4 rosparam 1.17.4 rospkg 1.6.0 rospkg-modules 1.6.0 rospy 1.17.4 rosservice 1.17.4 rostest 1.17.4 rostopic 1.17.4 rosunit 1.15.10 roswtf 1.17.4 rpds-py 0.20.1 rpm 0.4.0 rqt-action 0.4.11 rqt-bag 0.5.3 rqt-bag-plugins 0.5.3 rqt-console 0.4.14 rqt-dep 0.4.14 rqt-graph 0.4.16 rqt-gui 0.5.5 rqt-gui-py 0.5.5 rqt-image-view 0.4.19 rqt-launch 0.4.10 rqt-logger-level 0.4.13 rqt-moveit 0.5.13 rqt-msg 0.4.12 rqt-nav-view 0.5.8 rqt-plot 0.4.16 rqt-pose-view 0.5.13 rqt-publisher 0.4.12 rqt-py-common 0.5.5 rqt-py-console 0.4.12 rqt-reconfigure 0.5.7 rqt-robot-dashboard 0.5.8 rqt-robot-monitor 0.5.15 rqt-robot-steering 0.5.14 rqt-runtime-monitor 0.5.10 rqt-rviz 0.7.2 rqt-service-caller 0.4.12 rqt-shell 0.4.13 rqt-srv 0.4.11 rqt-tf-tree 0.6.5 rqt-top 0.4.11 rqt-topic 0.4.15 rqt-web 0.4.11 rviz 1.14.26 scikit-image 0.21.0 scipy 1.10.1 SecretStorage 2.3.1 Send2Trash 1.8.3 sensor-msgs 1.13.2 service-identity 18.1.0 setuptools 45.2.0 simplejson 3.16.0 sip 4.19.21 six 1.14.0 smach 2.5.3 smach-ros 2.5.3 smclib 1.8.7 sniffio 1.3.1 soupsieve 2.7 stack-data 0.6.3 sympy 1.13.3 systemd-python 234 terminado 0.18.1 tf 1.13.4 tf-conversions 1.13.4 tf2-geometry-msgs 0.7.10 tf2-kdl 0.7.10 tf2-py 0.7.10 tf2-ros 0.7.10 tifffile 2023.7.10 tinycss2 1.2.1 tomli 2.3.0 topic-tools 1.17.4 tornado 6.4.2 traitlets 5.14.3 Twisted 18.9.0 txaio 2.10.0 typing_extensions 4.13.2 tzdata 2025.2 u-msgpack-python 2.1 ubuntu-drivers-common 0.0.0 ubuntu-pro-client 8001 ufw 0.36 unattended-upgrades 0.1 uri-template 1.3.0 urllib3 1.25.8 usb-creator 0.3.7 vcstools 0.1.42 wadllib 1.3.3 wcwidth 0.2.14 webcolors 24.8.0 webencodings 0.5.1 websocket 0.2.1 websocket-client 1.8.0 wheel 0.34.2 widgetsnbextension 4.0.15 wrapt 1.11.2 wsaccel 0.6.2 wstool 0.1.18 xacro 1.14.20 xkit 0.0.0 zipp 3.20.2 zope.event 5.0 zope.interface 4.7.1 wrd@wrd-ThinkPad-X240:~$ python3 --version Python 3.8.10 wrd@wrd-ThinkPad-X240:~$ pip install braian Defaulting to user installation because normal site-packages is not writeable ERROR: Could not find a version that satisfies the requirement braian (from versions: none) ERROR: No matching distribution found for braian wrd@wrd-ThinkPad-X240:~$ " https://pypi.org/project/braian/: “ Skip to main content 🐍⚡️Support Python for everyone by grabbing a 30% discount on PyCharm—ALL proceeds go to the Python Software Foundation. Offer ends soon, so grab it today! GET 30% OFF PYCHARM PyPI Search PyPI braian 1.0.5 pip install braian Latest version Released: Mar 11, 2025 A python library for easy navigation, visualisation, and analysis of whole-brain quantification data. Project description Project details Release history Download files Project description braian logo BraiAn PyPI - Version status-badge Installation Once you are in an active python>=3.11,<3.14 environment, you can run: python3 -m pip install braian Citing If you use BraiAn in your work, please cite the paper below, currently in pre-print: Chiaruttini, N., Castoldi, C. et al. ABBA, a novel tool for whole-brain mapping, reveals brain-wide differences in immediate early genes induction following learning. bioRxiv (2024). https://doi.org/10.1101/2024.09.06.611625 Building Prerequisites git Poetry or venv/conda/pyenv/pyenv-win to manage dependencies. Windows instructions assume that you configured the PATH and PATHEXT variables with its command-line program location (e.g. git or pip). If you can't/didn't, you can juxtapose the path-to-exectuable to the respective commands (e.g., C:\Python311\python instead of python). If you don't know how, we recommend using Scoop. Step 1: clone the repository git clone https://codeberg.org/SilvaLab/BraiAn.git /path/to/BraiAn Step 2: install with Poetry cd /path/to/BraiAn poetry install # --with docs, to install documentation dependencies # --with dev, to install basic dependencies to work on ipython Poetry will automatically create a virtual environment in which it installs all the dependencies. If, instead, you want to manage the environment yourself, Poetry uses the one active during the installation. with pip Requires python>=3.11,<3.14. pip install -e /path/to/BraiAn Note: installing with pip doesn't assure to install the same version of the dependencies used by developers to run and test braian. Help Installing packages Uploading packages User guide Project name retention FAQs About PyPI PyPI Blog Infrastructure dashboard Statistics Logos & trademarks Our sponsors Contributing to PyPI Bugs and feedback Contribute on GitHub Translate PyPI Sponsor PyPI Development credits Using PyPI Terms of Service Report security issue Code of conduct Privacy Notice Acceptable Use Policy Status: All Systems Operational Developed and maintained by the Python community, for the Python community. Donate today! "PyPI", "Python Package Index", and the blocks logos are registered trademarks of the Python Software Foundation. © 2025 Python Software Foundation Site map AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page ”
12-06
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值