Mahout:DataModel doesn't have preference values

本文探讨了在使用Mahout进行推荐系统开发时遇到的异常问题,特别是当选择PearsonCorrelationSimilarity相似度算法时,由于数据模型缺乏偏好值导致的异常。文章提供了解决方案,即可以选择不依赖于偏好的相似度算法,如Tanimotocoefficient算法或log-likelihood算法,并详细介绍了这些算法在推荐系统中的应用。
INFO: Processed 943 users
Feb 52011 10:54:31 AM org.slf4j.impl.JCLLoggerAdapter info
INFO: Beginning evaluation using 0.9 of GenericBooleanPrefDataModel[users:1,2,3...]
Exception in thread "main" java.lang.IllegalArgumentException: DataModel doesn't have preference values
at com.google.common.base.Preconditions.checkArgument(Preconditions.java:90)
at org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity.<init>(PearsonCorrelationSimilarity.java:74)
at org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity.<init>(PearsonCorrelationSimilarity.java:66)
at mia.recommender.ch02.RecommenderIntro$6.buildRecommender(RecommenderIntro.java:163)
at org.apache.mahout.cf.taste.impl.eval.AbstractDifferenceRecommenderEvaluator.evaluate(AbstractDifferenceRecommenderEvaluator.java:124)
at mia.recommender.ch02.RecommenderIntro.eg6(RecommenderIntro.java:175)
at mia.recommender.ch02.RecommenderIntro.main(RecommenderIntro.java:38) 

 

    这个其实,耐心点往后读一点就能看到作者的解释.不过,话说回来,怎样才能将这段代码运行通过呢?究其原因是选择了PearsonCorrelationSimilarity相似度算法,而这个算法是要求偏好值的,所以抛出了" DataModel doesn't have preference values"的异常,我们只需要选适当的相似度算法(或者说不需要偏好值的算法)就可以解决这个问题.这里可选的方案有: Tanimoto coefficient算法和 log-likelihood算法,对应到具体的类:TanimotoCoefficientSimilarity 和 LogLikelihoodSimilarity

航拍图像多类别实例分割数据集 一、基础信息 • 数据集名称:航拍图像多类别实例分割数据集 • 图片数量: 训练集:1283张图片 验证集:416张图片 总计:1699张航拍图片 • 训练集:1283张图片 • 验证集:416张图片 • 总计:1699张航拍图片 • 分类类别: 桥梁(Bridge) 田径场(GroundTrackField) 港口(Harbor) 直升机(Helicopter) 大型车辆(LargeVehicle) 环岛(Roundabout) 小型车辆(SmallVehicle) 足球场(Soccerballfield) 游泳池(Swimmingpool) 棒球场(baseballdiamond) 篮球场(basketballcourt) 飞机(plane) 船只(ship) 储罐(storagetank) 网球场(tennis_court) • 桥梁(Bridge) • 田径场(GroundTrackField) • 港口(Harbor) • 直升机(Helicopter) • 大型车辆(LargeVehicle) • 环岛(Roundabout) • 小型车辆(SmallVehicle) • 足球场(Soccerballfield) • 游泳池(Swimmingpool) • 棒球场(baseballdiamond) • 篮球场(basketballcourt) • 飞机(plane) • 船只(ship) • 储罐(storagetank) • 网球场(tennis_court) • 标注格式:YOLO格式,包含实例分割的多边形坐标,适用于实例分割任务。 • 数据格式:航拍图像数据。 二、适用场景 • 航拍图像分析系统开发:数据集支持实例分割任务,帮助构建能够自动识别和分割航拍图像中各种物体的AI模型,用于地理信息系统、环境监测等。 • 城市
内容概要:本文详细介绍了一个基于YOLO系列模型(YOLOv5/YOLOv8/YOLOv10)的车祸检测与事故报警系统的设计与实现,适用于毕业设计项目。文章从项目背景出发,阐述了传统人工监控的局限性和智能车祸检测的社会价值,随后对比分析了YOLO不同版本的特点,指导读者根据需求选择合适的模型。接着,系统明确了核心功能目标,包括车祸识别、实时报警、多场景适配和可视化界面开发。在技术实现部分,文章讲解了数据集获取与标注方法、数据增强策略、模型训练与评估流程,并提供了完整的代码示例,涵盖环境搭建、训练指令、推理测试以及基于Tkinter的图形界面开发,实现了视频加载、实时检测与弹窗报警功能。最后,文章总结了项目的全流程实践意义,并展望了未来在智慧城市、车联网等方向的扩展潜力。; 适合人群:计算机相关专业本科毕业生,具备一定Python编程基础和机器学习基础知识,正在进行毕业设计的学生;; 使用场景及目标:①完成一个具有实际社会价值的毕设项目,展示从数据处理到模型部署的全流程能力;②掌握YOLO目标检测模型的应用与优化技巧;③开发具备实时检测与报警功能的交通监控系统,用于答辩演示或科研展示; 阅读建议:建议按照“背景—数据—模型—界面—总结”的顺序逐步实践,结合提供的代码链接进行动手操作,在训练模型时注意调整参数以适应本地硬件条件,同时可在基础上拓展更多功能如短信报警、多摄像头接入等以提升项目创新性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值