认识缓冲区Buffer

 

数据对于输入和输出的操作耗时是非常严重的问题,如果把这个问题放入到网络上去看待更甚是值得注意的一个问题了。假如结合基础的OS知识我们也知道如果要减少这种I/O操作的耗时或者也可以说提升这种效率的话,最大的可能就是减少物理读写的次数,而且尽可能做到主存数据的重读性(操作系统也在加强说明更多减少抖动现象的产生)。

java.nio包中我们可以直接来操作相对应的API了。可以让java更加方便的直接控制和运用缓冲区。缓冲区有几个需要了解的特定概念需要详尽来解释,才能更好的知道我们下面一些列需要针对的问题实质。

属性

容量(capacity):顾名思义就是表示缓冲区中可以保存多少数据;

极限(limit):缓冲区中的当前数据终结点。不过它是可以动态改变的,这样做的好处也是充分利用重用性;

位置(position):这个也好理解,其实就是指明下一个需要读写数据的位置。

上面上个关系还可以具体用图示的方式来表达整体概念,如下图所示:


在极限的时候就说到可以修改它,所以对于它的操作由以下方法:

l         clear():首先把极限设置为容量,再者就是需要把位置设置为0

l         flip():把极限设置为位置区,再者就是需要把位置设置为0

l         rewind():不改变极限,不过还是需要把位置设置为0

最为最基础的缓冲区ByteBuffer,它存放的数据单元是字节。首先要强调的是ByteBuffer没有提供公开的构造方法,只是提供了两个静态的工厂方法。

l         allocate(int capacity):返回一个ByteBuffer对象,参数表示缓冲区容量大小。

l         allocateDirect (int capacity):返回一个ByteBuffer对象,参数也是一样表示缓冲区容量大小。

在这里需要注意的是在使用两者的时候需要特别小心,allocateDirect和当前操作系统联系的非常紧密,它牵涉到使用native method的方法,大家知道一旦本地方法就是需要考虑调用dll(动态链接库)这个时候基本也就失去了JAVA语言的特性,言外之意对于耗资源非常大。所以如果考虑到当前使用的缓存区比较庞大而且是一个长期驻留使用的,这个时候可以考虑使用它。

本系统采用Python编程语言中的Flask框架作为基础架构,实现了一个面向二手商品交易的网络平台。该平台具备完整的前端展示与后端管理功能,适合用作学术研究、课程作业或个人技术能力训练的实际案例。Flask作为一种简洁高效的Web开发框架,能够以模块化方式支持网站功能的快速搭建。在本系统中,Flask承担了核心服务端的角色,主要完成请求响应处理、数据运算及业务流程控制等任务。 开发工具选用PyCharm集成环境。这款由JetBrains推出的Python专用编辑器集成了智能代码提示、错误检测、程序调试与自动化测试等多种辅助功能,显著提升了软件编写与维护的效率。通过该环境,开发者可便捷地进行项目组织与问题排查。 数据存储部分采用MySQL关系型数据库管理系统,用于保存会员资料、产品信息及订单历史等内容。MySQL具备良好的稳定性和处理性能,常被各类网络服务所采用。在Flask体系内,一般会配合SQLAlchemy这一对象关系映射工具使用,使得开发者能够通过Python类对象直接管理数据实体,避免手动编写结构化查询语句。 缓存服务由Redis内存数据库提供支持。Redis是一种支持持久化存储的开放源代码内存键值存储系统,可作为高速缓存、临时数据库或消息代理使用。在本系统中,Redis可能用于暂存高频访问的商品内容、用户登录状态等动态信息,从而加快数据获取速度,降低主数据库的查询负载。 项目归档文件“Python_Flask_ershou-master”预计包含以下关键组成部分: 1. 应用主程序(app.py):包含Flask应用初始化代码及请求路径映射规则。 2. 数据模型定义(models.py):通过SQLAlchemy声明与数据库表对应的类结构。 3. 视图控制器(views.py):包含处理各类网络请求并生成回复的业务函数,涵盖账户管理、商品展示、订单处理等操作。 4. 页面模板目录(templates):存储用于动态生成网页的HTML模板文件。 5. 静态资源目录(static):存放层叠样式表、客户端脚本及图像等固定资源。 6. 依赖清单(requirements.txt):记录项目运行所需的所有第三方Python库及其版本号,便于环境重建。 7. 参数配置(config.py):集中设置数据库连接参数、缓存服务器地址等运行配置。 此外,项目还可能包含自动化测试用例、数据库结构迁移工具以及运行部署相关文档。通过构建此系统,开发者能够系统掌握Flask框架的实际运用,理解用户身份验证、访问控制、数据持久化、界面动态生成等网络应用关键技术,同时熟悉MySQL数据库运维与Redis缓存机制的应用方法。对于入门阶段的学习者而言,该系统可作为综合性的实践训练载体,有效促进Python网络编程技能的提升。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
在当代储能装置监控技术领域,精确测定锂离子电池的电荷存量(即荷电状态,SOC)是一项关键任务,它直接关系到电池运行的安全性、耐久性及整体效能。随着电动车辆产业的迅速扩张,业界对锂离子电池SOC测算的精确度与稳定性提出了更为严格的标准。为此,构建一套能够在多样化运行场景及温度条件下实现高精度SOC测算的技术方案具有显著的实际意义。 本文介绍一种结合Transformer架构与容积卡尔曼滤波(CKF)的混合式SOC测算系统。Transformer架构最初在语言处理领域获得突破性进展,其特有的注意力机制能够有效捕捉时间序列数据中的长期关联特征。在本应用中,该架构用于分析电池工作过程中采集的电压、电流与温度等时序数据,从而识别电池在不同放电区间的动态行为规律。 容积卡尔曼滤波作为一种适用于非线性系统的状态估计算法,在本系统中负责对Transformer提取的特征数据进行递归融合与实时推算,以持续更新电池的SOC值。该方法增强了系统在测量噪声干扰下的稳定性,确保了测算结果在不同环境条件下的可靠性。 本系统在多种标准驾驶循环(如BJDST、DST、FUDS、US06)及不同环境温度(0°C、25°C、45°C)下进行了验证测试,这些条件涵盖了电动车辆在实际使用中可能遇到的主要工况与气候范围。实验表明,该系统在低温、常温及高温环境中,面对差异化的负载变化,均能保持较高的测算准确性。 随附文档中提供了该系统的补充说明、实验数据及技术细节,核心代码与模型文件亦包含于对应目录中,可供进一步研究或工程部署使用。该融合架构不仅在方法层面具有创新性,同时展现了良好的工程适用性与测算精度,对推进电池管理技术的进步具有积极意义。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### 关于51单片机缓冲区的实现方案 51单片机作为一种经典的8位微控制器,在嵌入式系统中广泛应用,但由于其资源有限(如内存容量较小),在处理复杂任务时需要特别注意优化设计。对于缓冲区的设计与实现,通常涉及以下几个方面: #### 1. **硬件层面的缓冲区支持** 51单片机本身并不具备专门的硬件缓冲区机制,但可以通过外接设备扩展缓冲能力。例如,使用外部RAM芯片来增加可用存储空间[^1]。此外,还可以通过串口或其他通信接口连接具有更大缓存能力的器件,如SRAM或FIFO芯片。 #### 2. **软件层面的缓冲区管理** 当无法依赖额外硬件时,可以在程序内部定义并维护缓冲区。以下是几种常见的方法: - **静态数组作为缓冲区** 使用全局变量声明固定大小的数组充当缓冲区。这种方法简单易用,适合数据量相对稳定的应用场景。 ```c unsigned char buffer[64]; // 定义一个64字节的缓冲区 ``` - **动态分配缓冲区** 如果目标平台支持C标准库函数,则可考虑`malloc()`/`free()`等操作符创建灵活尺寸的缓冲区。不过需要注意的是,部分精简版编译器可能不完全兼容这些功能。 - **环形队列结构** 针对频繁进出的数据流(如UART收发),推荐采用循环缓冲策略以提高效率减少溢出风险。 ```c typedef struct { unsigned char data[128]; volatile uint8_t head; volatile uint8_t tail; } CircularBuffer; void init_buffer(CircularBuffer *cb){ cb->head = cb->tail = 0; } int is_full(CircularBuffer *cb){return (cb->head +1)%sizeof(cb->data)==cb->tail;} int is_empty(CircularBuffer *cb){return cb->head==cb->tail;} void push_data(CircularBuffer *cb, unsigned char byte){ if(!is_full(cb)){ cb->data[cb->head]=byte; cb->head=(cb->head+1)%sizeof(cb->data); } } unsigned char pop_data(CircularBuffer *cb){ unsigned char ret=0xFF; if(!is_empty(cb)){ ret=cb->data[cb->tail]; cb->tail=(cb->tail+1)%sizeof(cb->data); } return ret; } ``` #### 3. **中断驱动型缓冲区更新** 为了提升实时性能以及减轻CPU负担,应充分利用51系列丰富的中断源特性完成自动化的数据采集与暂存过程。比如针对RS-485通信实例提到的情况,合理配置接收完毕触发事件能够显著简化主流程逻辑[^2]。 #### 4. **双缓冲或多级缓冲技术** 面对高吞吐率需求场合下单一缓冲难以满足要求的问题,引入多重独立区域交替运作模式不失为一种有效的解决办法。它允许一边继续填充新资料的同时另一边供后续分析调用,从而避免潜在冲突现象发生。 --- ### 注意事项 尽管上述措施有助于改善51单片机上的缓冲表现,但仍需认识到该类架构存在固有的局限性——尤其是寄存器数量稀少、地址总线宽度狭窄等因素都会制约最终效果。因此实际选型阶段务必综合考量具体应用场景后再决定是否采纳此款产品替代其他更为先进的解决方案如ARM Cortex-M家族成员等等[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值