题目
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
判断是否为平衡二叉树
1 这道题目的平衡二叉树的定义是: 任何一个节点的左右子树深度 相差不大于1.
2 按照定义,用递归,一个个节点检查。
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null){
return true;
}
int left = getheight(root.left);
int right = getheight(root.right);
return (Math.abs(left-right)<=1) && isBalanced(root.left) && isBalanced(root.right) ;
}
public int getheight(TreeNode root){
if(root==null){
return 0;
}
return Math.max(getheight(root.left),getheight(root.right))+1;
}
}
3 但是还有一种平衡二叉树定义:相对于root节点,任何叶子节点的深度差距不大于1。
4 这时候只要计算深度最大值和最小值的差值即可。
public static int maxDepth(TreeNode root) {
2 if (root == null) {
3 return 0;
4 }
5 return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
6 }
7
8 public static int minDepth(TreeNode root) {
9 if (root == null) {
10 return 0;
11 }
12 return 1 + Math.min(minDepth(root.left), minDepth(root.right));
13 }
14
15 public static boolean isBalanced(TreeNode root){
16 return (maxDepth(root) - minDepth(root) <= 1);
17 }