C++篇(22)LRU Cache

1、什么是LRU Cache

LRU是Least Recently Used的缩写,意思是最近最少使用,是一种Cache替换算法。那么什么是Cache呢?狭义的Cache指的是CPU和主存之间的快速RAM,通常它不像系统主存那样使用DRAM技术,而是使用昂贵但较为快速的SRAM技术。广义上的Cache是指位于速度相差较大的两种硬件之间,用于协调两者数据传输速度差异的结构。除了CPU与主存之间有Cache,内存与硬盘之间也有Cache,乃至在硬盘与网络之间也有某种意义上的Cache——称为Internet临时文件夹或网络内容缓存等。

Cache的容量有限,因此当Cache的容量使用完之后,又有新的内容需要添加进来时,就需要挑选并舍弃原有的部分内容,从而腾出来空间放新的内容。LRU Cache的替换原则就是将最近最少使用的内容替换掉

其实,LRU理解成最久未使用会更形象,因为该算法每次替换掉的就是一段时间内最久没有使用过的内容。

2、LRU Cache的实现

https://leetcode.cn/problems/lru-cache

要实现增删查改时间复杂度为O(1)的LRU Cache,我们第一时间想到的是哈希表与双向链表。双向链表能实现任意位置O(1)的插入删除,使用哈希表是因为哈希表的增删查改也是O(1)。

但是这样做会面临一个问题,当我们要调整_LRUList中的key的位置到头部时,需要更新顺序,但我们不知道数据在链表中的哪个位置,只能遍历差找,此时时间复杂度为O(n),就不符合题目要求了。唯一的破局点就在于:找到key,就要找到key对应存储数据在链表中的位置。所以,这里的哈希表中的第二个位置类型不应该是int,而是一个迭代器。

private:
    // hash做到更新查找是O(1)
    unordered_map<int, list<pair<int, int>>::iterator> _hashMap;
    // LRU  假设尾部的数据就是最近最少用
    list<pair<int, int>> _LRUList;

第二个问题,如果找到key了,那么如何更新key对应值的位置呢?方案1:erase+push_front,更新迭代器,原迭代器失效。方案2:转移节点,标准库的list提供了专门的一个接口(如下图)。

使用splice的话就不用再更新迭代器了,比先删除再头插要更方便一些。

class LRUCache {
public:
    LRUCache(int capacity) 
        :_capacity(capacity)
    {   }
    
    int get(int key) 
    {
        auto ret = _hashMap.find(key);
        if(ret != _hashMap.end())
        {
            // 更新key对应值的位置
            LtIter it = ret->second;
            _LRUList.splice(_LRUList.begin(), _LRUList, it);

            return it->second;
        }
        else
        {
            return -1;
        }
    }
    
    void put(int key, int value) 
    {
        // 1、新增
        // 2、更新
        auto ret = _hashMap.find(key);
        if(ret == _hashMap.end())
        {
            // 满了,先删除LRU的数据
            if(_capacity == _hashMap.size())
            {
                pair<int, int> back = _LRUList.back();
                _hashMap.erase(back.first);
                _LRUList.pop_back();
            }

            _LRUList.push_front(make_pair(key, value));
            _hashMap[key] = _LRUList.begin();
        }
        else
        {
            auto ret = _hashMap.find(key);
            LtIter it = ret->second;
            it->second = value;  //更新

            _LRUList.splice(_LRUList.begin(), _LRUList, it);
        }
    }

private:
    typedef list<pair<int, int>>::iterator LtIter;
    // hash做到更新查找是O(1)
    unordered_map<int, LtIter> _hashMap;

    // LRU  假设尾部的数据就是最近最少用
    list<pair<int, int>> _LRUList;

    size_t _capacity;
};
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值