F - Elevator

The Berland State Building is the highest building in the capital of Berland. Curious Polikarp was studying the principle of operation of an elevator in the Berland State Building for a quite a while. Recently he has finally understood the algorithm behind its operation, in case a person enters the elevator on the floor f and presses the floor buttons e1, e2, ..., en one by one. The buttons are pressed sequentially but very quickly while the elevator is still located on the floor f. All the pressed buttons are distinct and differ from the floor f. No other button pressings are considered in this problem.

After the buttons e1, e2, ..., en have been pressed, all of them become highlighted and the elevator starts moving according the following rules:

  • The elevator starts moving towards the floor, the button of which is highlighted and pressed first among all highlighted buttons. Say, it's floor/button a.
  • If on its way to a the elevator passes the floor b, the button of which is highlighted, it stops there, the light goes out for the button bunhighlighting it, and the floor b is considered visited. Then the elevator continues moving towards the floor a. It is possible that there will be more than one floor such as b on the way to floor a — all these floors will be passed one by one according to the described algorithm.
  • Having reached the floor a, the elevator stops there, the light goes out for the button a unhighlighting it, and the floor a is considered visited. Then the elevator starts to move towards the floor, the button of which has been pressed the earliest among the currently highlighted buttons. That floor becomes a new value of a. The elevator continues moving according to the rules described in the previous paragraph. If it's impossible to find a new value for a because there are no highlighted floor buttons, it means that all floors have been visited and the elevator stops.

Now, when the principle of the elevator's operation is clear, Polikarp wants to experiment with the elevator's movements without the elevator itself. He wants to write a program that simulates elevator's operation. Unfortunately, he didn't attend any programming lessons and it's a challenge for him. Can you please help Polikarp and write a program which will simulate movements of the elevator?

Input

The first line of input contains a pair of integers n, f (1 ≤ n, f ≤ 100), wheren — amount of pressings made, f — index of the current floor where all these pressings were made. The second line contains distinct integers e1, e2, ..., en(1 ≤ ei ≤ 100, ei ≠ f) — buttons indices in the order they were pressed.

Output

Output all the floors where the elevator stops, in a chronological order of the stops.

Examples
Input
4 5
10 9 2 1
Output
9 10 2 1 
Input
4 3
2 4 1 5
Output
2 4 1 5 

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <cstring>
using namespace std;
char a[150],b[150],vis[150];
int main()
{
    freopen("input.txt", "r", stdin);
    freopen("output.txt", "w", stdout);
    int n,i,j,m,x,y,flag=0,f=0;
    cin>>n>>m;
    memset(vis,0,sizeof(vis));

    for(i=0; i<n; i++)
    {
        scanf("%d",&a[i]);
        vis[a[i]]=1;
    }
    x=m;
    for(i=0; i<n; i++)
    {
        flag=0;
        if(a[i]!=-1&&vis[a[i]]==1)
        {
            y = a[i];
            if(x<y) flag=1;
            if(flag)
            {
                for(j=x; j<y; j++)
                {
                    if(vis[j]==1)
                    {
                        if(f==0)
                        {
                            printf("%d",j);
                            f=1;
                        }
                        else
                            printf(" %d",j);
                        vis[j]=0;
                    }

                }
                vis[a[i]]=-1;
                if(f==0)
                {
                    printf("%d",a[i]);
                    f=1;
                }
                else
                    printf(" %d",a[i]);
            }
            else
            {
                for(j=x; j>y; j--)
                {
                    if(vis[j]==1)
                    {
                        if(f==0)
                        {
                            printf("%d",j);
                            f=1;
                        }
                        else
                            printf(" %d",j);
                        vis[j]=0;
                    }
                }
                vis[a[i]]=-1;
                if(f==0)
                {
                    printf("%d",a[i]);
                    f=1;
                }
                else
                    printf(" %d",a[i]);
            }
            a[i]=-1;
        x=y;
        }
    }
    return 0;
}

基于蒙特卡洛法的规模化电动车有序充放电及负荷预测(Python&Matlab实现)内容概要:本文围绕“基于蒙特卡洛法的规模化电动车有序充放电及负荷预测”展开,结合Python和Matlab编程实现,重点研究大规模电动汽车在电网中的充放电行为建模与负荷预测方法。通过蒙特卡洛模拟技术,对电动车用户的出行规律、充电需求、接入时间与电量消耗等不确定性因素进行统计建模,进而实现有序充放电策略的优化设计与未来负荷曲线的精准预测。文中提供了完整的算法流程与代码实现,涵盖数据采样、概率分布拟合、充电负荷聚合、场景仿真及结果可视化等关键环节,有效支撑电网侧对电动车负荷的科学管理与调度决策。; 适合人群:具备一定电力系统基础知识和编程能力(Python/Matlab),从事新能源、智能电网、交通电气化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究大规模电动车接入对配电网负荷特性的影响;②设计有序充电策略以平抑负荷波动;③实现基于概率模拟的短期或长期负荷预测;④为电网规划、储能配置与需求响应提供数据支持和技术方案。; 阅读建议:建议结合文中提供的代码实例,逐步运行并理解蒙特卡洛模拟的实现逻辑,重点关注输入参数的概率分布设定与多场景仿真的聚合方法,同时可扩展加入分时电价、用户行为偏好等实际约束条件以提升模型实用性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值