POJ-2251 Dungeon Master
You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of unit cubes which may or may not be filled with rock. It takes one minute to move one unit north, south, east, west, up or down. You cannot move diagonally and the maze is surrounded by solid rock on all sides.
Is an escape possible? If yes, how long will it take?
Input
The input consists of a number of dungeons. Each dungeon description starts with a line containing three integers L, R and C (all limited to 30 in size).
L is the number of levels making up the dungeon.
R and C are the number of rows and columns making up the plan of each level.
Then there will follow L blocks of R lines each containing C characters. Each character describes one cell of the dungeon. A cell full of rock is indicated by a ‘#’ and empty cells are represented by a ‘.’. Your starting position is indicated by ‘S’ and the exit by the letter ‘E’. There’s a single blank line after each level. Input is terminated by three zeroes for L, R and C.
Output
Each maze generates one line of output. If it is possible to reach the exit, print a line of the form
Escaped in x minute(s).
where x is replaced by the shortest time it takes to escape.
If it is not possible to escape, print the line
Trapped!
Sample Input
3 4 5
S....
.###.
.##..
###.#
#####
#####
##.##
##...
#####
#####
#.###
####E
1 3 3
S##
#E#
###
0 0 0
Sample Output
Escaped in 11 minute(s).
Trapped!
solution
#include<iostream>
#include<queue>
#include<string>
using namespace std;
struct node
{
int l;
int x;
int y;
int time;
}Node;
node S, E;
int L, R, C;
bool inq[50][50][50] = { false };
char maze[50][50][50];
int Z[6] = { 0,0,0,0,1,-1 };
int X[6] = { 0,0,1,-1,0,0 };
int Y[6] = { 1,-1,0,0,0,0 };
bool judge(int l, int r, int c)
{
if (maze[l][r][c] == '#' || inq[l][r][c] == true || l < 0 || l >= L || r < 0 || r >= R || c < 0 || c >= C)
return false;
else
return true;
}
int BFS()
{
queue<node> q;
q.push(S);
while (!q.empty())
{
node top = q.front();
q.pop();
if (top.l == E.l&&top.x == E.x&&top.y == E.y)
return top.time;
for (int i = 0; i < 6; i++)
{
int newL = top.l + Z[i];
int newX = top.x + X[i];
int newY = top.y + Y[i];
if (judge(newL, newX, newY))
{
Node.l = newL, Node.x = newX, Node.y = newY;
Node.time = top.time + 1;
q.push(Node);
inq[newL][newX][newY] = true;
}
}
}
return -1;
}
int main()
{
while(cin>>L>>R>>C)
{
if (L == 0 && R == 0 && C == 0)
break;
memset(inq, false, sizeof(inq));//每次操作初始化标记数组
for (int i = 0; i < L; i++)
for (int j = 0; j < R; j++)
for (int k = 0; k < C; k++)
{
cin >> maze[i][j][k];
if (maze[i][j][k] == 'S')
{
S.l = i, S.x = j, S.y = k, S.time = 0;
}
if (maze[i][j][k] == 'E')
{
E.l = i, E.x = j, E.y = k, E.time = -1;
}
}
int res = BFS();
if (res == -1)
cout << "Trapped!" << endl;
else
cout << "Escaped in " << res << " minute(s)." << endl;
}
}
本文提供了一种使用广度优先搜索(BFS)算法解决三维迷宫问题的方法,旨在寻找从起点到终点的最短路径。通过遍历每一个可能的方向并记录时间,最终确定是否能够逃脱迷宫及所需的时间。
977

被折叠的 条评论
为什么被折叠?



