Quizfarm

部署运行你感兴趣的模型镜像

http://quizfarm.com/

 

You Scored as Physics/Engineering/Computer

You should strongly consider majoring (or minoring) in Engineering, or Physics, or related majors (e.g., Architecture, Astronomy, Astrophysics, Biochemistry, Chemical Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer/Management Information Systems (CIS/MIS), Computer Science, Electrical Engineering, Genetics, Environmental Science, Industrial Engineering, Mathematics, Mechanical Engineering). <br> <br> It is possible that the best major for you is your 2nd, 3rd, or even 5th listed category, so be sure to consider ALL majors in your OTHER high scoring categories (below). You may score high in a category you didnt think you would--it is possible that a great major for you is something you once dismissed as not for you. The right major for you will be something 1) you love and enjoy and 2) are really great at it. <br> <br> Consider adding a minor or double majoring to make yourself standout and to combine your interests. Please post your results in your myspace/blog/journal.

Physics/Engineering/Computer
63%
History/Anthropology/LiberalArts
56%
Psychology/Sociology
56%
Accounting/Finance/Marketing
50%
Education/Counseling
50%
HR/BusinessManagement
50%
Biology/Chemistry/Geology
50%
Mathematics/Statistics
50%
English/Journalism/Comm
38%
Religion/Theology
38%
Nursing/AthleticTraining/Health
38%
French/Spanish/OtherLanguage
31%
Visual&PerformingArts
31%
PoliticalScience/Philosophy
31%

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.9

TensorFlow-v2.9

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

内容概要:本文深入探讨了Django REST Framework(DRF)在毕业设计中的高级应用与性能优化,围绕智能校园系统案例,系统讲解了DRF的核心进阶技术,包括高级序列化器设计、视图集定制、细粒度权限控制、查询优化、缓存策略、异步任务处理以及WebSocket实时通信集成。文章通过详细的代码示例,展示了如何利用DynamicFieldsModelSerializer实现动态字段返回、使用select_related和prefetch_related优化数据库查询、通过Celery实现异步任务、并集成Channels实现WebSocket实时数据推送。同时介绍了基于IP的限流、自定义分页、聚合统计等实用功能,全面提升API性能与安全性。; 适合人群:具备Django和DRF基础,正在进行毕业设计或开发复杂Web API的高校学生及初级开发者,尤其适合希望提升项目技术深度与系统性能的学习者。; 使用场景及目标:①构建高性能、可扩展的RESTful API,应用于智能校园、数据分析、实时监控等毕业设计项目;②掌握DRF高级技巧,如动态序列化、查询优化、缓存、异步任务与实时通信,提升项目竞争力;③优化系统响应速度与用户体验,应对高并发场景。; 阅读建议:此资源以实战为导向,建议读者结合代码逐项实践,重点理解性能优化与架构设计思路,同时动手搭建环境测试缓存、异步任务和WebSocket功能,深入掌握DRF在真实项目中的高级应用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值