1. 由两点求直线参数
直线公式:
Ax+By+C=0 Ax + By + C = 0 Ax+By+C=0
假如两个点代入直线公式:
Ax1+By1+C=0 Ax_1 + By_1 + C = 0 Ax1+By1+C=0
Ax2+By2+C=0 Ax_2 + By_2 + C = 0 Ax2+By2+C=0
两式相减得到:
A(x1−x2)+B(y1−y2)=0 A(x_1-x_2) + B(y_1-y_2)=0 A(x1−x2)+B(y1−y2)=0
如果令 A=y1−y2A = y_1 - y_2A=y1−y2,那么B=x2−x1B = x_2 - x_1B=x2−x1
代入得:
x1(y1−y2)+y1(x2−x1)+C=0
x_1(y_1-y_2) + y_1(x_2-x_1) + C = 0
x1(y1−y2)+y1(x2−x1)+C=0
x1y1−x1y2+x2y1−x1y1+C=0
x_1y_1 - x_1y_2 + x_2y_1 - x_1y_1 + C = 0
x1y1−x1y2+x2y1−x1y1+C=0
所以:
C=x1y2−x2y1
C = x_1y_2 - x_2y_1
C=x1y2−x2y1
2. 由两直线求交点
两直线公式为:
A1x+B1y+C1=0 A_1x + B_1y + C_1 = 0 A1x+B1y+C1=0
A2x+B2y+C2=0 A_2x + B_2y + C_2 = 0 A2x+B2y+C2=0
解得交点坐标:
x=B1C2−B2C1A1B2−A2B1 x = \frac{B_1C_2 - B_2C_1}{A_1B_2-A_2B_1} x=A1B2−A2B1B1C2−B2C1
y=A2C1−A1C2A1B2−A2B1 y = \frac{A_2C_1-A_1C_2} {A_1B_2-A_2B_1}y=A1B2−A2B1A2C1−A1C2