Cyclic Tour
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total Submission(s): 861 Accepted Submission(s): 438
Problem Description
There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom
wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?
Input
There are several test cases in the input. You should process to the end of file (EOF).
The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
Output
Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1.
Sample Input
6 9 1 2 5 2 3 5 3 1 10 3 4 12 4 1 8 4 6 11 5 4 7 5 6 9 6 5 4 6 5 1 2 1 2 3 1 3 4 1 4 5 1 5 6 1
Sample Output
42 -1HintIn the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.类似hdu3488,只是加了一个判断是否都被匹配。#include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; #define INF 9999999 #define maxn 205 int lx[maxn],ly[maxn]; int w[maxn][maxn]; int Match[maxn],visx[maxn],visy[maxn]; int slack[maxn]; int ans,n,m; bool findPath(int x) { int tmp; visx[x]=1; for(int y=1; y<=n; y++) { if(visy[y])continue; if(w[x][y]==lx[x]+ly[y]) { visy[y]=1; if(!Match[y]||findPath(Match[y])) { Match[y]=x; return true; } } else slack[y]=min(slack[y],w[x][y]-lx[x]-ly[y]); } return false; } void km() { memset(Match,0,sizeof(Match)); memset(ly,0,sizeof(ly)); for(int i=1; i<=n; i++) { lx[i]=INF; for(int j=1; j<=n; j++) lx[i]=min(lx[i],w[i][j]); } for(int x=1; x<=n; x++) { for(int i=1; i<=n; i++) slack[i]=INF; while(true) { memset(visx,0,sizeof(visx)); memset(visy,0,sizeof(visy)); if(findPath(x))break; int tmp=INF; for(int i=1; i<=n; i++) { if(!visy[i]) { if(tmp>slack[i]) tmp=slack[i]; } } if(tmp==INF)return ; for(int i=1; i<=n; i++) { if(visx[i])lx[i]+=tmp; if(visy[i])ly[i]-=tmp; } } } } int main() { int cas; while(scanf("%d %d",&n,&m)!=EOF) { int a,b,c; for(int i=1; i<=n; i++) for(int j=1; j<=n; j++) { w[i][j]=INF; } for(int i=0; i<m; i++) { cin>>a>>b>>c; if(w[a][b]>c) w[a][b]=c; } km(); int ans=0; int flag=0; for(int i=1; i<=n; i++) { if(Match[i]==0||w[Match[i]][i]==INF) { flag=1; cout<<"-1"<<endl; break; } if(Match[i]) ans+=w[Match[i]][i]; } if(!flag) cout<<ans<<endl; } return 0; }