POJ 3449 Geometric Shapes

本文介绍了一种通过将多边形分解为线段并检查这些线段是否相交的方法来判断多边形是否相交的技术。特别关注了正方形顶点的计算,并提供了一种避免使用三角函数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断多边形是否相交只需把多边形拆成一条条的线段,然后看线段是否相交即可

其中需要注意的是正方形顶点的求法,最好不使用三角函数去求。看我代码中的方法。

然后就比较好搞了


#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <map>
#include <sstream>
#include <queue>
#include <vector>
#define MAXN 100005
#define MAXM 211111
#define eps 1e-8
#define INF 50000001
using namespace std;
inline int dblcmp(double d)
{
    if(fabs(d) < eps) return 0;
    return d > eps ? 1 : -1;
}
struct point
{
    double x, y;
    point(){}
    point(double _x, double _y): x(_x), y(_y) {}
    void input()
    {
        scanf("%lf%lf", &x, &y);
    }
    bool operator ==(point a)const
    {
        return dblcmp(a.x - x) == 0 && dblcmp(a.y - y) == 0;
    }
    point sub(point p)
    {
        return point(x - p.x, y - p.y);
    }
    double dot(point p)
    {
        return x * p.x + y * p.y;
    }
    double det(point p)
    {
        return x * p.y - y * p.x;
    }
    double distance(point p)
    {
        return hypot(x - p.x, y - p.y);
    }
}p[33];
struct line
{
    point a, b;
    line(){}
    line(point _a, point _b){ a = _a; b = _b;}
    void input()
    {
        a.input();
        b.input();
    }
    int segcrossseg(line v)
    {
        int d1 = dblcmp(b.sub(a).det(v.a.sub(a)));
        int d2 = dblcmp(b.sub(a).det(v.b.sub(a)));
        int d3 = dblcmp(v.b.sub(v.a).det(a.sub(v.a)));
        int d4 = dblcmp(v.b.sub(v.a).det(b.sub(v.a)));
        if ((d1 ^ d2) == -2 && (d3 ^ d4) == -2)return 2;
        return (d1 == 0 && dblcmp(v.a.sub(a).dot(v.a.sub(b))) <= 0||
                d2 == 0 && dblcmp(v.b.sub(a).dot(v.b.sub(b))) <= 0||
                d3 == 0 && dblcmp(a.sub(v.a).dot(a.sub(v.b))) <= 0||
                d4 == 0 && dblcmp(b.sub(v.a).dot(b.sub(v.b))) <= 0);
    }
    int linecrossseg(line v)//v is seg
    {
        int d1 = dblcmp(b.sub(a).det(v.a.sub(a)));
        int d2 = dblcmp(b.sub(a).det(v.b.sub(a)));
        if ((d1 ^ d2) == -2) return 2;
        return (d1 == 0 || d2 == 0);
    }

    point crosspoint(line v)
    {
        double a1 = v.b.sub(v.a).det(a.sub(v.a));
        double a2 = v.b.sub(v.a).det(b.sub(v.a));
        return point((a.x * a2 - b.x * a1) / (a2 - a1), (a.y * a2 - b.y * a1) / (a2 - a1));
    }

};
struct node
{
    string name;
    vector<line>seg;
};
char sa[55], sb[55];
vector<node>g;
vector<string>ans[55];
bool cmp(node x, node y)
{
    return x.name < y.name;
}
bool ok(int k1, int k2)
{
    int sz1 = g[k1].seg.size();
    int sz2 = g[k2].seg.size();
    for(int i = 0; i < sz1; i++)
        for(int j = 0; j < sz2; j++)
            if(g[k1].seg[i].segcrossseg(g[k2].seg[j])) return true;
    return false;
}
void solve()
{
    for(int i = 0; i < 50; i++) ans[i].clear();
    sort(g.begin(), g.end(), cmp);
    int sz = g.size();
    for(int i = 0; i < sz; i++)
    {
        for(int j = 0; j < sz; j++)
        {
            if(i == j) continue;
            if(ok(i, j)) ans[i].push_back(g[j].name);
        }
    }
    for(int i = 0; i < sz; i++)
    {
        if(ans[i].size() == 0) printf("%s has no intersections\n", g[i].name.c_str());
        else
        {
            if(ans[i].size() == 1)
            {
                printf("%s intersects with %s\n", g[i].name.c_str(), ans[i][0].c_str());
            }
            else if(ans[i].size() == 2)
            {
                printf("%s intersects with %s and %s\n", g[i].name.c_str(), ans[i][0].c_str(), ans[i][1].c_str());
            }
            else
            {
                printf("%s intersects with ", g[i].name.c_str());
                for(int j = 0; j < ans[i].size() - 1; j++) printf("%s, ", ans[i][j].c_str());
                printf("and %s\n", ans[i][ans[i].size() - 1].c_str());
            }
        }
    }
    g.clear();
    printf("\n");
}
int main()
{
    double xa, ya, xb, yb;
    while(scanf("%s", sa) != EOF)
    {
        if(strcmp(sa, "-") == 0)
        {
            solve();
            continue;
        }
        if(strcmp(sa, ".") == 0) break;
        node tmp;
        tmp.name = sa;
        scanf("%s", sb);
        if(sb[0] == 's')
        {
            point a, c;
            scanf(" (%lf,%lf)", &a.x, &a.y);
            scanf(" (%lf,%lf)", &c.x, &c.y);
            point b, d;
            double x, y, mx, my;
            mx = (a.x + c.x)/2.0, my = (a.y + c.y) / 2.0;
            x = a.x - mx;    y = a.y - my;
            b.x = -y + mx;   b.y = x + my;
            x = c.x - mx;    y = c.y - my;
            d.x = - y + mx; d.y = x + my;
            tmp.seg.push_back(line(a, b));
            tmp.seg.push_back(line(b, c));
            tmp.seg.push_back(line(a, d));
            tmp.seg.push_back(line(c, d));
        }
        else if(sb[0] == 'l')
        {
            point a, b;
            scanf(" (%lf,%lf)", &a.x, &a.y);
            scanf(" (%lf,%lf)", &b.x, &b.y);
            tmp.seg.push_back(line(a, b));

        }
        else if(sb[0] == 't')
        {
            point a, b, c;
            scanf(" (%lf,%lf)", &a.x, &a.y);
            scanf(" (%lf,%lf)", &b.x, &b.y);
            scanf(" (%lf,%lf)", &c.x, &c.y);
            tmp.seg.push_back(line(a, b));
            tmp.seg.push_back(line(a, c));
            tmp.seg.push_back(line(b, c));
        }
        else if(sb[0] == 'r')
        {
            point a, b, c, d;
            scanf(" (%lf,%lf)", &a.x, &a.y);
            scanf(" (%lf,%lf)", &b.x, &b.y);
            scanf(" (%lf,%lf)", &c.x, &c.y);
            double dx = b.x - a.x;
            d.x = c.x - dx;
            double dy = b.y - a.y;
            d.y = c.y - dy;
            tmp.seg.push_back(line(a, b));
            tmp.seg.push_back(line(b, c));
            tmp.seg.push_back(line(a, d));
            tmp.seg.push_back(line(c, d));
        }
        else
        {
            int t;
            scanf("%d", &t);
            for(int i = 0; i < t; i++) scanf(" (%lf,%lf)", &p[i].x, &p[i].y);
            for(int i = 0; i < t; i++) tmp.seg.push_back(line(p[i], p[(i + 1) % t]));
        }
        g.push_back(tmp);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值