bzoj3029 守卫者的挑战

本文介绍了一种使用动态规划算法来计算在特定条件下成功通过一系列挑战并获取地图的概率的方法。队员需要在一个迷宫中完成N项挑战,每项挑战都有可能获得额外的背包容量或者地图碎片,最终目标是收集足够的地图碎片并离开擂台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

  打开了黑魔法师Vani的大门,队员们在迷宫般的路上漫无目的地搜寻着关押applepi的监狱的所在地。突然,眼前一道亮光闪过。“我,Nizem,是黑魔法圣殿的守卫者。如果你能通过我的挑战,那么你可以带走黑魔法圣殿的地图……”瞬间,队员们被传送到了一个擂台上,最初身边有一个容量为K的包包。
  擂台赛一共有N项挑战,各项挑战依次进行。第i项挑战有一个属性ai,如果ai>=0,表示这次挑战成功后可以再获得一个容量为ai的包包;如果ai=-1,则表示这次挑战成功后可以得到一个大小为1
的地图残片。地图残片必须装在包包里才能带出擂台,包包没有必要全部装满,但是队员们必须把
【获得的所有的】地图残片都带走(没有得到的不用考虑,只需要完成所有N项挑战后背包容量足够容纳地图残片即可),才能拼出完整的地图。并且他们至少要挑战成功L次才能离开擂台。
  队员们一筹莫展之时,善良的守卫者Nizem帮忙预估出了每项挑战成功的概率,其中第i项挑战成功的概率为pi%。现在,请你帮忙预测一下,队员们能够带上他们获得的地图残片离开擂台的概率。
Input

  第一行三个整数N,L,K。   第二行N个实数,第i个实数pi表示第i项挑战成功的百分比。背包容量还剩
  第三行N个整数,第i个整数ai表示第i项挑战的属性值. Output

  一个整数,表示所求概率,四舍五入保留6 位小数。

数学期望dp。
dp[i][j][x]表示前i个挑战,赢下其中j个,背包容量还剩x的概率。
用刷表法,分成功和失败两种情况转移。
dp[i+1][j+1][tn(x+a[i+1])]+=dp[i][j][tn(x)]*p[i+1];
dp[i+1][j][tn(x)]+=dp[i][j][tn(x)]*(1-p[i+1]);
最后的答案就是把所有j>=l,x>=0的dp累加。
注意因为n比较小,所以容量大了没有用。
计算时只需要考虑n以内,超过n的当成n算即可。
注意可以出现中间放不下但是最后放下的情况,所以下标x可以为负。
平移解决即可。

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
double dp[202][202][403],p[202];
int a[202],n;
int tn(int x)
{
    if (x>n) x=n;
    return x+201;
}
int main()
{
    int i,j,k,l,m,q,x,y,z;
    double ans=0;
    scanf("%d%d%d",&n,&l,&k);
    for (i=1;i<=n;i++)
    {
        scanf("%d",&x);
        p[i]=x/100.0;
    }
    for (i=1;i<=n;i++)
      scanf("%d",&a[i]);
    if (k>n) k=n;
    dp[0][0][tn(k)]=1;
    for (i=0;i<n;i++)
      for (j=0;j<=i;j++)
        for (x=-i;x<=n;x++)
        {
            dp[i+1][j+1][tn(x+a[i+1])]+=dp[i][j][tn(x)]*p[i+1];
            dp[i+1][j][tn(x)]+=dp[i][j][tn(x)]*(1-p[i+1]);
        }
    for (i=l;i<=n;i++)
      for (j=0;j<=n;j++)
        ans+=dp[n][i][tn(j)];
    printf("%lf",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值