Leetcode 561. 数组拆分 I

该博客主要讨论了如何在给定的整数数组中,通过分组最小值来最大化总和的问题。提供的C++解决方案是通过对数组进行排序,然后选取最小值,从而达到最大总和。这是一种典型的算法问题,涉及排序和数组操作。

题目描述

给定长度为 2n 的整数数组 nums ,你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), …, (an, bn) ,使得从 1 到 n 的 min(ai, bi) 总和最大。

返回该 最大总和 。

示例 1:

输入:nums = [1,4,3,2]
输出:4
解释:所有可能的分法(忽略元素顺序)为:

  1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3
  2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3
  3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4
    所以最大总和为 4

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/array-partition-i
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

C++

class Solution {
public:
    int arrayPairSum(vector<int>& nums) {
        /*
        思路:
        我发现相近的在一起会使得更大
        先排序,再取奇数位       
        */
        sort(nums.begin(),nums.end());
        int sum=0;
        for(int i=0;i<nums.size();i=i+2){
            sum+=nums[i];
        }   
        return sum;

    }
};
基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问题的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问题,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问题中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问题;②学习并掌握粒子群算法在复杂组合优化问题中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值