大致题意:
有n种原材料,每种一件。现在给出m个组合,每个组合包含k种原材料,代表这k种材料可以加工成一个成品。求最多能加工出多少成品。
大致思路:
先把每个点拆做a和a'。连接a->a'。设容量为1。对于每k个原材料,每个点a连接他后面的那个数拆出的点b‘。k个数中的头和尾分别连接到原点和汇点上。求出最大流即可。
吐槽一句,想出构图之后,又手贱看了一下网上的题解,大都要先对所有的点排序后求网络流。就是弄不明白为什么要排序,这里没有排序的代码也ac了。有哪位大神能解释,是我的思路有问题还是他们都是互相抄的呢。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int inf=1<<30;
const int nMax=20000;
const int mMax=300000;
class node{
public:
int c,u,v,next;
};node edge[mMax];
int ne, head[nMax];
int cur[nMax], ps[nMax], dep[nMax];
void addedge(int u, int v,int w){ ////dinic邻接表加边
edge[ne].u = u;
edge[ne].v = v;
edge[ne].c = w;
edge[ne].next = head[u];
head[u] = ne ++;
edge[ne].u = v;
edge[ne].v = u;
edge[ne].c = 0;
edge[ne].next = head[v];
head[v] = ne ++;
}
int dinic(int s, int t){ // dinic
int tr, res = 0;
int i, j, k, f, r, top;
while(1){
memset(dep, -1, sizeof(dep));
for(f = dep[ps[0]=s] = 0, r = 1; f != r;)
for(i = ps[f ++], j = head[i]; j; j = edge[j].next)
if(edge[j].c && dep[k=edge[j].v] == -1){
dep[k] = dep[i] + 1;
ps[r ++] = k;
if(k == t){
f = r; break;
}
}
if(dep[t] == -1) break;
memcpy(cur, head, sizeof(cur));
i = s, top = 0;
while(1){
if(i == t){
for(tr =inf, k = 0; k < top; k ++)
if(edge[ps[k]].c < tr)
tr = edge[ps[f=k]].c;
for(k = 0; k < top; k ++){
edge[ps[k]].c -= tr;
edge[ps[k]^1].c += tr;
}
i = edge[ps[top=f]].u;
res += tr;
}
for(j = cur[i]; cur[i]; j = cur[i] =edge[cur[i]].next){
if(edge[j].c && dep[i]+1 == dep[edge[j].v]) break;
}
if(cur[i]){
ps[top ++] = cur[i];
i = edge[cur[i]].v;
}
else{
if(top == 0) break;
dep[i] = -1;
i = edge[ps[-- top]].u;
}
}
}
return res;
}
int num[20];
int main(){
int s,t,n,m,a,b,c,i,j;
while(cin>>n>>m){
ne=1;
memset(head,0,sizeof(head));
for(i=1;i<=n;i++){
addedge(i,i+n,1);
}
while(m--){
cin>>c;
for(i=0;i<c;i++){
cin>>num[i];
}
addedge(0,num[0],1);
addedge(num[c-1]+n,2*n+1,1);
for(0;i<c-1;i++){
addedge(num[i]+n,num[i+1],1);
}
}
cout<<dinic(0,2*n+1)<<endl;
}
return 0;
}