hdu - 2973 - YAPTCHA - (威尔逊定理)

本文介绍了一个数学部门面临的挑战,即解决一个复杂的数学谜题以验证访客的人类身份。通过运用威尔逊定理,文章详细解释了如何编写一个程序来自动化解决这个谜题,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The math department has been having problems lately. Due to immense amount of unsolicited automated programs which were crawling across their pages, they decided to put Yet-Another-Public-Turing-Test-to-Tell-Computers-and-Humans-Apart on their webpages. In short, to get access to their scientific papers, one have to prove yourself eligible and worthy, i.e. solve a mathematic riddle. 


However, the test turned out difficult for some math PhD students and even for some professors. Therefore, the math department wants to write a helper program which solves this task (it is not irrational, as they are going to make money on selling the program). 

The task that is presented to anyone visiting the start page of the math department is as follows: given a natural n, compute 

where [x] denotes the largest integer not greater than x.
Input
The first line contains the number of queries t (t <= 10^6). Each query consist of one natural number n (1 <= n <= 10^6).
Output
For each n given in the input output the value of Sn.
Sample Input
13
1
2
3
4
5
6
7
8
9
10
100
1000
10000
Sample Output
0
1
1
2
2
2
2
3
3
4
28
207
1609

题意就是给出n,按公式求sn,观察公式中的一个和项,当被减数为整数时,此和项的值为1,当被减数不是整数时,此和项的值为0;那么怎么判断一个和项是否为整数呢,

这里用威尔逊定理:当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p )  而令被减数中(3*k+6)=p,则被减数化为((p-1)!+1)/p,从而得到当p为素数时((p-1)!+1)mod p等于0,即被减数((p-1)!+1)/p为整数,对应和项为1,

即当3*k+1为素数时,Si=1,否则Si=0;

代码:

#include<iostream>
#include<string>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iomanip>
#include<queue>
#include<cstring>
#include<map>
using namespace std;
typedef long long ll;
#define M 3000007
int n;
bool prime[M+10];
int ans[M+10];

void init()
{
    int m=sqrt(M+0.5);
    int i,j;
    for(i=2;i<=m;i++)
    {
        if(!prime[i])
        {
            for(j=i*i;j<=M;j+=i)
            {
                prime[j]=true;
            }
        }
    }

    ans[0]=ans[1]=0;
    for(i=1;i<=1000000;i++)
    {
        if(!prime[i*3+7])
            ans[i]=ans[i-1]+1;
        else
            ans[i]=ans[i-1];
    }
}

int main()
{
    init();
	int T,i;
	scanf("%d",&T);
	while(T--)
    {
        scanf("%d",&n);
        printf("%d\n",ans[n]);
    }
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值