动态规划练习--19(最低通行费)

题目描述:

描述

一个商人穿过一个 N*N 的正方形的网格,去参加一个非常重要的商务活动。他要从网格的左上角进,右下角出。每穿越中间1个小方格,都要花费1个单位时间。商人必须在(2N-1)个单位时间穿越出去。而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入
第一行是一个整数,表示正方形的宽度N (1 <= N < 100);
后面 N 行,每行 N 个不大于 100 的整数,为网格上每个小方格的费用。
输出
至少需要的费用。
样例输入
5
1 4 6 8 10 
2 5 7 15 17 
6 8 9 18 20 
10 11 12 19 21 
20 23 25 29 33 
样例输出
109
题目简述:从左上角走到右下角,每走一步都有相应的费用,求最少的费用。

解题思路:

1、用二维数组存储每一个走到每一个点的最少费用,考虑到边界问题,所以把整个数组除所用数据以外全都设成比较大的数,从而忽略边界问题。

2、又因为有步数要求,所以只能向右或向下走。

3、比较该点与之前的比较,看哪一条路径花费最少。

4、输出a[n][n],表示到达终点所需的最少费用。

源代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值