容易先处理出 L ( a ) L(a) L(a) 和 R ( a ) R(a) R(a),设元素个数分别为 c n t L , c n t R cntL,cntR cntL,cntR。
接下来考虑 DP。设 d p 1 i , j dp1_{i,j} dp1i,j 表示前 i i i 个数选了 L L L 中的前 j j j 个数的方案; d p 2 i , j dp2_{i,j} dp2i,j 表示后 i i i 个数选了 R R R 中的前 j j j 个数的方案。两者方程相似,故下面只对 d p 1 dp1 dp1 进行讲解。
考虑转移,对于当前的数 a i a_i ai,以及 L L L 的前 j j j 个数已经被选择,可以分为以下三种情况:
-
a i = L j a_i = L_j ai=Lj 若 L j L_j Lj 在之前已经被选择,则 a i a_i ai 选不选均可,否则需要强制选,则有转移 d p i , j = 2 d p i − 1 , j + d p i − 1 , j − 1 dp_{i,j} = 2dp_{i - 1,j} + dp_{i - 1,j - 1} dpi,j=2dpi−1,j+dpi−1,j−1。
-
a i < L j a_i < L_j ai<Lj a i a_i ai 的选择不会对 L ′ L^\prime L′ 造成影响,则有转移 d p i , j = 2 d p i − 1 , j dp_{i,j} = 2dp_{i - 1,j} dpi,j=2dpi−1,j。
-
a i > L j a_i > L_j ai>Lj 不能选择 a i a_i ai,否则会破坏 L = L ′ L = L^\prime L=L′,则有转移 d p i , j = d p i − 1 , j dp_{i,j} = dp_{i - 1,j} dpi,j=dpi−1,j。
当统计答案时,需要小心重复计算的情况。因此当 a i a_i ai 为全局最大值时,强制让 d p 1 dp1 dp1 去选择这个最大值,然后强制 d p 2 dp_2 dp2 不选这个最大值,则对答案的贡献为 ( d p 1 i , c n t L − d p 1 i − 1 , c n t L ) × d p 2 i + 1 , c n t R − 1 (dp1_{i,cntL} - dp1_{i - 1,cntL}) \times dp2_{i + 1,cntR - 1} (dp1i,cntL−dp1i−1,cntL)×dp2i+1,cntR−1。
时间复杂度为 O ( n 2 ) O(n^2) O(n2),代码如下:
void solve ()
{
int n = read (),mx = 0;
vector <int> a (n + 1),L (n + 1),R (n + 1);
vector <vector <int>> dp1 (n + 1,vector <int> (n + 1)),dp2 (n + 2,vector <int> (n + 2));
for (int i = 1;i <= n;++i) a[i] = read ();
int cntL = 0,cntR = 0;
for (int i = 1;i <= n;++i)
if (mx < a[i]) L[++cntL] = a[i],mx = a[i];
mx = 0;
for (int i = n;i;--i)
if (mx < a[i]) R[++cntR] = a[i],mx = a[i];
dp1[0][0] = dp2[n + 1][0] = 1;
for (int i = 1;i <= n;++i)
{
for (int j = cntL;~j;--j)
{
if (L[j] == a[i]) dp1[i][j] = (dp1[i - 1][j] * 2 % MOD + dp1[i - 1][j - 1]) % MOD;
else if (L[j] > a[i]) dp1[i][j] = dp1[i - 1][j] * 2 % MOD;
else dp1[i][j] = dp1[i - 1][j];
}
}
for (int i = n;i >= 1;--i)
{
for (int j = cntR;~j;--j)
{
if (R[j] == a[i]) dp2[i][j] = (dp2[i + 1][j] * 2 % MOD + dp2[i + 1][j - 1]) % MOD;
else if (R[j] > a[i]) dp2[i][j] = dp2[i + 1][j] * 2 % MOD;
else dp2[i][j] = dp2[i + 1][j];
}
}
ll ans = 0;
for (int i = 1;i <= n;++i)
{
if (a[i] != mx) continue;
ans = (ans + 1ll * ((dp1[i][cntL] - dp1[i - 1][cntL] + MOD) % MOD) * dp2[i + 1][cntR - 1] % MOD) % MOD;
}
printf ("%lld\n",ans);
}
首先在 E1 的基础上可以滚动数组优化。其次,再次观察可以发现,每次的转移其实只是可根据与 a i a_i ai 的相对大小从而分为三类。
首先用 lower_bound 找到满足
L
x
≥
a
i
L_x \ge a_i
Lx≥ai 这一条件最小的
x
x
x。若能够取等,则这一单点相当于可以从
x
x
x 和
x
−
1
x - 1
x−1 两个单点转移而来。对于
L
x
>
a
i
L_x > a_i
Lx>ai 的,相当于进行区间乘
2
2
2 的操作;对于
L
x
<
a
i
L_x < a_i
Lx<ai 的,相当于继承原有的值,不做任何处理即可。最后的答案,显然只需要将
c
n
t
L
cntL
cntL 与
c
n
t
R
−
1
cntR - 1
cntR−1 时候的值存下来,单点查询就能满足。
因此需要用能够实现区间乘,单点加,单点查询的数据结构维护,直接上线段树即可。时间复杂度优化为 O ( n log n ) O(n \log n) O(nlogn)。
代码如下:
#include <bits/stdc++.h>
#define pii pair <int,int>
#define init(x) memset (x,0,sizeof (x))
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
using namespace std;
const int MAX = 3e5 + 5;
const int MOD = 998244353;
inline int read ();
int tree[MAX << 2],lazy[MAX << 2];
void pushdown (int cur)
{
if (lazy[cur] == 1) return;
tree[cur << 1] = 1ll * tree[cur << 1] * lazy[cur] % MOD;
lazy[cur << 1] = 1ll * lazy[cur << 1] * lazy[cur] % MOD;
tree[cur << 1 | 1] = 1ll * tree[cur << 1 | 1] * lazy[cur] % MOD;
lazy[cur << 1 | 1] = 1ll * lazy[cur << 1 | 1] * lazy[cur] % MOD;
lazy[cur] = 1;
}
void build (int cur,int l,int r)
{
tree[cur] = 0;lazy[cur] = 1;
if (l == r) {tree[cur] = l == 0;return ;}
int mid = (l + r) >> 1;
build (cur << 1,l,mid);build (cur << 1 | 1,mid + 1,r);
}
void modify1 (int cur,int l,int r,int x,int v)
{
if (l == r) {tree[cur] = v;lazy[cur] = 1;return;}
int mid = (l + r) >> 1;
pushdown (cur);
if (x <= mid) modify1 (cur << 1,l,mid,x,v);
else modify1 (cur << 1 | 1,mid + 1,r,x,v);
}
void modify2 (int cur,int l,int r,int x,int y)
{
if (x <= l && y >= r) {tree[cur] = tree[cur] * 2 % MOD;lazy[cur] = lazy[cur] * 2 % MOD;return;}
int mid = (l + r) >> 1;
pushdown (cur);
if (x <= mid) modify2 (cur << 1,l,mid,x,y);
if (y > mid) modify2 (cur << 1 | 1,mid + 1,r,x,y);
}
int query (int cur,int l,int r,int x)
{
if (l == r) return tree[cur];
int mid = (l + r) >> 1;
pushdown (cur);
if (x <= mid) return query (cur << 1,l,mid,x);
else return query (cur << 1 | 1,mid + 1,r,x);
}
void solve ()
{
int n = read (),mx = 0,cntL = 0,cntR = 0;
vector <int> a (n + 1),L (n + 1),R (n + 1),ansl (n + 1),ansr (n + 2);
for (int i = 1;i <= n;++i) a[i] = read ();
for (int i = 1;i <= n;++i)
if (mx < a[i]) L[++cntL] = a[i],mx = a[i];
mx = 0;
for (int i = n;i;--i)
if (mx < a[i]) R[++cntR] = a[i],mx = a[i];
build (1,0,cntL);
L.resize (cntL + 1);R.resize (cntR + 1);
for (int i = 1;i <= n;++i)
{
int id = lower_bound (L.begin (),L.end (),a[i]) - L.begin ();
if (L[id] == a[i])
{
int dx = query (1,0,cntL,id),dy = query (1,0,cntL,id - 1);
modify1 (1,0,cntL,id,(dx * 2 % MOD + dy) % MOD);
++id;
}
if (id <= cntL) modify2 (1,0,cntL,id,cntL);
ansl[i] = query (1,0,cntL,cntL);
}
build (1,0,cntR);
for (int i = n;i >= 1;--i)
{
int id = lower_bound (R.begin (),R.end (),a[i]) - R.begin ();
if (R[id] == a[i])
{
int dx = query (1,0,cntR,id),dy = query (1,0,cntR,id - 1);
modify1 (1,0,cntR,id,(dx * 2 % MOD + dy) % MOD);
++id;
}
if (id <= cntR) modify2 (1,0,cntR,id,cntR);
ansr[i] = query (1,0,cntR,cntR - 1);
}
ll ans = 0;
ansr[n + 1] = 1;
for (int i = 1;i <= n;++i)
{
if (a[i] != mx) continue;
ans = (ans + 1ll * ((ansl[i] - ansl[i - 1] + MOD) % MOD) * ansr[i + 1] % MOD) % MOD;
}
printf ("%lld\n",ans);
}
int main ()
{
int t = read ();
while (t--) solve ();
return 0;
}
inline int read ()
{
int s = 0;int f = 1;
char ch = getchar ();
while ((ch < '0' || ch > '9') && ch != EOF)
{
if (ch == '-') f = -1;
ch = getchar ();
}
while (ch >= '0' && ch <= '9')
{
s = s * 10 + ch - '0';
ch = getchar ();
}
return s * f;
}
5023

被折叠的 条评论
为什么被折叠?



